[1] |
SHANG C, YANG F, HUANG D, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223-233.
|
[2] |
LI Q, DU Q, BA W, et al. Multiple-input multiple-output soft sensors based on KPCA and MKLS-SVM for quality prediction in atmospheric distillation column [J]. International Journal of Innovative Computing, Information and Control, 2012, 8(12): 8215-8230.
|
[3] |
NAPOLI G, XIBILIA M G. Soft sensor design for a topping process in the case of small datasets[J]. Computers & Chemical Engineering, 2011, 35(11): 2447-2456.
|
[4] |
GALICIA H J, HE Q P, WANG J. A reduced order soft sensor approach and its application to a continuous digester[J]. Journal of Process Control, 2011, 21(4): 489-500.
|
[5] |
袁小锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模[J]. 化工学报, 2016, 67(3): 724-728. YUAN X F, GE Z Q, SONG Z H. Adaptive soft sensor based on time difference model and locally weighted partial least squares regression[J]. CIESC Journal, 2016, 67(3): 724-728.
|
[6] |
YUAN X F, HUANG B, GE Z Q, et al. Double locally weighted principal component regression for soft sensor with sample selection under supervised latent structure[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 153: 116-125.
|
[7] |
YU J, CHEN K, MORI J, et al. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction[J]. Energy, 2013, 61(6): 673-686.
|
[8] |
YANG K, JIN H P, CHEN X G, et al. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 155: 170-182.
|
[9] |
刘国海, 苏勇, 杨铭, 等. 基于多准则和高斯过程回归的动态软测量建模方法[J]. 东南大学学报(自然科学版), 2015, (6): 1086-1090. LIU G H, SU Y, YANG M, et al. Dynamic soft sensor modeling based on multi-criterion method and Gaussian process regression [J]. Journal of Southeast University (Natural Science Edition), 2015, (6): 1086 -1090.
|
[10] |
阮宏镁, 田学民, 王平. 基于联合互信息的动态软测量方法[J]. 化工学报, 2014, 65(11): 4497-4502. RUAN H M, TIAN X M, WANG P. Dynamic soft sensor method based on joint mutual information [J]. CIESC Journal, 2014, 65(11): 4497-4502.
|
[11] |
WISKOTT L, SEJNOWSKI T. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14(4): 715- 770.
|
[12] |
WU C, DU B, ZHANG L. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5): 2858-2874.
|
[13] |
FRANZIUS M, WILBERT N, WISKOTT L. Invariant object recognition and pose estimation with slow feature analysis[J]. Neural Computation, 2011, 23(9): 2289-2323.
|
[14] |
ZHANG Z, TAO D. Slow feature analysis for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 436-450.
|
[15] |
MINH H Q, WISKOTT L. Multivariate slow feature analysis and decorrelation filtering for blind source separation.[J]. Image Processing IEEE Transactions on, 2013, 22(7): 2737-2750.
|
[16] |
何会会, 李钢虎, 要庆生, 等. 用慢特征分析算法实现水声信号盲分离[J]. 声学技术, 2014, 33(3): 270-274. HE H H, LI G H, YAO Q S, et al.Blind source separation of underwater acoustic signals by using slowness feature analysis[J].Technical Acoustics, 2014, 33(3): 270-274.
|
[17] |
SHANG C, HUANG B, YANG F, et al. Slow feature analysis for monitoring and diagnosis of control performance[J]. Journal of Process Control, 2016, 39: 21-34.
|
[18] |
SHANG C, YANG, GAO X Q, et al. Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis[J]. AIChE Journal, 2015, 61(11): 3666-3682.
|
[19] |
ZHANG H Y, TIAN X M, CAI L F. Nonlinear process fault diagnosis using kernel slow feature discriminant analysis[J]. IFAC-Papers on Line, 2015, 48(21): 607-612.
|
[20] |
SHANG C, YANG F, GAO X Q, et al. Extracting latent dynamics from process data for quality prediction and performance assessment via slow feature regression[C]//American Control Conference (ACC). Chicago: IEEE, 2015: 912-917.
|
[21] |
SHANG C, HUANG B, YANG F, et al. Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling[J]. AIChE Journal, 2015, 61(12): 4126-4139.
|
[22] |
KONEN W, KOCH P. The slowness principle: SFA can detect different slow components in non-stationary time series[J]. International Journal of Innovative Computing & Applications, 2011, 3(3): 3-10.
|
[23] |
王桂增, 叶昊. 主元分析与偏最小二乘法[M].北京: 清华大学出版社, 2012: 106-107. WANG G Z, YE H. Principal Component Analysis and Partial Least Squares [M].Beijing: Tsinghua University Press, 2012: 106-107.
|
[24] |
BOHMER W, GRUNEWALDER S, NICKISCH H, et al. Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis[J]. Machine Learning, 2012, 89(1/2): 67-86.
|
[25] |
SOUZA F, SANTOS P, ARAUJO R. Variable and delay selection using neural networks and mutual information for data-driven soft sensors [C]//Emerging Technologies and Factory Automation (ETFA).Spain: IEEE, 2010: 1-8.
|
[26] |
MODDEMEIJER R. On estimation of entropy and mutual information of continuous distributions[J]. Signal Processing, 1989, 16(3): 233-248.
|
[27] |
童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10): 4317-4323. TONG C D, LAN T, SHI X H.Fault detection by decentralized dynamic PCA algorithm on mutual information[J].CIESC Journal, 2016, 67(10): 4317-4323.
|
[28] |
JIN H P, CHEN X G, YANG J W, et al. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & Chemical Engineering, 2014, 71: 77-93.
|
[29] |
BOLN-CANEDO V, SNCHEZ-MAROO N, ALONSO-BETANZOS A. Feature Selection for High-Dimensional Data[M]. Springer Publishing Company, Incorporated, 2015: 17-24.
|
[30] |
金思毅, 李悦卿, 夏茂森. 常减压装置常压塔塔顶汽油干点的软测量[J]. 化工进展, 2006, 25(s1): 74-76. JIN S Y, LI Y Q, XIA M S. Curde colmun gasoline end point soft-sensing of atmospheric and vacuum unit[J].Chemical Industry and Engineering Progress, 2006, 25(s1): 74-76.
|
[31] |
唐孟海, 胡兆灵. 原油蒸馏[M]. 北京: 中国石化出版社, 2007: 44-45. TANG M H, HU Z L.Crude Oil Distillation [M]. Beijing: China Petro-Chemical Press, 2007: 44-45.
|