[1] |
张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009. ZHANG R Y. Phase Change Material and Phase Change Energy Storage Technology[M]. Beijing: Science Press, 2009.
|
[2] |
ZHANG J J, QU Z G, LIU Y. Numerical study on the melting thermal characteristics of a microencapsulated phase change plate[J]. Numerical Heat Transfer, Part A: Applications, 2016, 70(4): 399-419.
|
[3] |
ZHANG J J, QU Z G, JIN Z G. Experimental study on the thermal characteristics of a microencapsulated phase-change composite plate[J]. Energy, 2014, 71: 94-103.
|
[4] |
DELGADO M, LÁZARO A, MAZO J, et al. Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 253-273.
|
[5] |
ALKAN C, SARI A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage[J]. Energy Conversion and Management, 2011, 52: 687-692.
|
[6] |
HAN Y, LUAN W, JIANG Y, et al. Protection of electronic devices on nuclear rescue robot: passive thermal control[J]. Applied Thermal Engineering, 2016, 101: 224-230.
|
[7] |
KIM T Y, HYUN B S, LEE J J, et al. Numerical study of the spacecraft thermal control hardware combining solid-liquid phase change material and a heat pipe[J]. Aerospace Science and Technology, 2013, 27(1): 10-16.
|
[8] |
ROSSI R M, BOLLI W P. Phase change materials for the improvement of heat protection[J]. Advanced Engineering Materials, 2005, 7(5): 368-373.
|
[9] |
ALAWADHI E M. Thermal analysis of a building brick containing phase change material[J]. Energy and Buildings, 2008, 40(3): 351-357.
|
[10] |
HO C, CHU C. Thermal protection characteristics of a vertical rectangular cell filled with PCM/air layer[J]. Heat and Mass Transfer, 1996, 31(3): 191-198.
|
[11] |
MATHIEU-POTVIN F, GOSSELIN L. Thermal shielding of multilayer walls with phase change materials under different transient boundary conditions[J]. International Journal of Thermal Sciences, 2009, 48(9): 1707-1717.
|
[12] |
YENDLER B, POFFENBARGER N, PATEL A, et al. New approach for thermal protection system of a probe during entry[C]//2nd International Planetary Probe Conference. Sunnyvale, Ca: NASA Ames Conference Center, 2004.
|
[13] |
姚草根, 吕宏军, 贾新朝, 等. 重复使用金属热防护系统研究进展[J]. 宇航材料工艺, 2011, 41(2): 1-4. YAO C G, LÜ H J, JIA X C, et al. Reusable metallic thermal protection system[J]. Aerospace Materials and Technology, 2011, 41(2): 1-4.
|
[14] |
CARBAJAL G, SOBHAN C B, PETERSON G P, et al. Thermal response of a flat heat pipe sandwich structure to a localized heat flux[J]. International Journal of Heat and Mass Transfer, 2006, 49(21): 4070-4081.
|
[15] |
BLOSSER M L, POTEET C C, CHEN R R, et al. Development of advanced metallic-thermal-protection system prototype hardware[J]. Journal of Spacecraft and Rockets, 2015, 41(2): 183-194.
|
[16] |
BOUILLY J M, DARIOL L, LELEU F. Ablative thermal protections for atmospheric entry. An overview of past missions and needs for future programmes[C]//Proceedings 5th European Workshop on Thermal Protection Systems and Hot Structures. Nether Lands, 2006.
|
[17] |
杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1): 47-56. YANG Y Z, YANG J L, FANG D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1): 47-56.
|
[18] |
TOBE R J, GRANDHI R V. Hypersonic vehicle thermal protection system model optimization and validation with vibration tests[J]. Aerospace Science and Technology, 2013, 28(1): 208-213.
|
[19] |
EPSTEIN R I, MALLOY K J. Electrocaloric devices based on thin-film heat switches[J]. Journal of Applied Physics, 2009, 106(6): 064509-064509-7.
|
[20] |
SUNADA E, PAUKEN M, NOVAK K, et al. Design and flight qualification of a paraffin-actuated heat switch for mars surface applications[C]//International Conference on Environmental Systems. San Antonio, 2002.
|
[21] |
KISEEV V M, VLASSOV V V, MURAOKA I. Experimental optimization of capillary structures for loop heat pipes and heat switches[J]. Applied Thermal Engineering, 2010, 30(11/12): 1312-1319.
|
[22] |
WARZOHA R J, WEIGAND R M, FLEISCHER A S. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers[J]. Applied Energy, 2015, 137: 716-725.
|
[23] |
XUE L A, JACKSON M M, KEHL K, et al. Passive thermal switch: US20050099776[P]. 2005.
|
[24] |
VANAPALLI S, KEIJZER R, BUITELAAR P, et al. Cryogenic flat-panel gas-gap heat switch[J]. Cryogenics, 2016, 78: 83-88.
|
[25] |
WADLEY H N, QUEHEILLALT D T, HAJ-HARIRI H, et al. Method and apparatus for jet blast deflection: US 8360361[P]. 2013-01-29.
|
[26] |
于瀛. 航母喷气偏流板的构成及运行[J]. 现代舰船, 2012, 3: 13. YU Y. Composition and operation of the jet blast deflector for carrier[J]. Modern Ships, 2012, 3: 13.
|
[27] |
ZHANG J J, QU Z G, FU R P, et al. Experimental study on the transient thermal characteristics of an integrated deflector under the periodic impingement of a supersonic flame jet[J]. International Journal of Heat and Mass Transfer, 2015, 85: 811-823.
|
[28] |
QUEHEILLALT D T, CARBAJAL G, PETERSON G P, et al. A multifunctional heat pipe sandwich panel structure[J]. International Journal of Heat and Mass Transfer, 2008, 51(1/2): 312-326.
|
[29] |
CARBAJAL G, SOBHAN C B, PETERSON G P, et al. A quasi-3D analysis of the thermal performance of a flat heat pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(21/22): 4286-4296.
|
[30] |
ZHANG J J, QU Z G, FU R P, et al. Part Ⅱ: Numerical study on the flow and thermal characteristics of an integrated deflector under the periodic impingement of a supersonic high temperature jet[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1095-1111.
|