[1] |
RAJAN P, MEENA K, ABBUL B K. Recent advances in the applications of ionic liquids in protein stability and activity: a review[J]. Appl. Biochem. Biotechnol., 2014, 172(8): 3701-3720.
|
[2] |
KENNETH R S. Ionic liquids for clean technology[J]. J. Chem. Technol. & Biotechnol., 1997, 4(68): 351-356.
|
[3] |
徐德增, 李丹, 徐磊. 咪唑类离子液体溶解纤维素的研究进展[J]. 合成纤维工业, 2011, 34(5): 48-51. XU D Z, LI D, XU L. Research progress in cellulose dissolution in imidazolium ionic liquids[J]. Chin. Synth. Fib. Ind., 2011, 34(5): 48-51.
|
[4] |
FUJITA K, OHNO H. Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids[J]. Biopolymers, 2010, 93(12): 1093-1099.
|
[5] |
胡小玲, 郭小青, 管萍, 等. 在离子液体中蛋白质溶解性和稳定性的研究进展[J]. 功能材料, 2013, 44(12): 1679-1685. HU X L, GUO X Q, GUAN P, et al. Research progress of dissolution and stability of protein in ionic liquids[J]. J. Functional Materials, 2013, 44(12): 1679-1685.
|
[6] |
HERMANN W, CHIARA C, CHRISTIAN H. How ionic liquids can help to stabilize native proteins[J]. Phys. Chem. Chem. Phys., 2012, 14(2): 415-426.
|
[7] |
任强, 武进, 张军, 等. 1-烯丙基,3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J]. 高分子学报, 2003, (3): 448-451. REN Q, WU J, ZHANG J, et al. Synthesis of 1-allyl, 3-methylimidazolium-based room-temperature ionic liquid and preliminary study of its dissolving cellulose[J]. Acta. Polym. Sin., 2003, (3): 448-451.
|
[8] |
段先泉, 徐纪刚, 何北海, 等. 壳聚糖在1-乙基-3-甲基咪唑醋酸盐离子液体中的溶解与再生[J]. 化工新型材料, 2011, 39(4): 56-59. DUAN X Q, XU J G, HE B H, et al. The dissolution and regeneration of chitosan in 1-ethyl-3-methylimidazolium acetate ionic liquid[J]. New Chem. Mater., 2011, 39(4): 56-59.
|
[9] |
李代禧, 张燕, 郭柏松, 等. 低温干燥过程中LEA蛋白对胰岛素结构稳定性的研究[J]. 生物医学工程学杂志, 2013, 30(4): 854-859. LI D X, ZHANG Y, GUO B S, et al. Investigation on bioactive protection of LEA protein for insulin by molecular simulation in the low-temperature drying process[J]. Biomed. Eng., 2013, 30(4): 854-859.
|
[10] |
KRUGER P, STRBBURGER W, WOLLMER A, et al. The simulated dynamic of the insulin monomer and their relationship to the molecule's structure[J]. Eur. Biophys. J., 1987,14: 449-459.
|
[11] |
ALAN Z, WILLIAM R P, MICHELLE A L, et al. Using heat conduction microcalorimetry to study thermal aggregation kinetics of proteins[J]. Thermochimica Acta, 2010, 499(499): 1-7.
|
[12] |
吴云剑, 崔颖璐, 郑清川, 等. CYP2C9酶与Warfarin结合模型的立体选择性理论研究[J]. 高等学校化学学报, 2014, 35(12): 2605-2611. WU Y J, CUI Y L, ZHENG Q C, et al. Theoretical studies on the substrate binding mode and regioselectivity of human CYP2C9 with S- and R-warfarin[J]. Chem. J. Chinese Universities, 2014, 35(12): 2605-2611.
|
[13] |
NAGAMPALLI R S, KRISHNA, VASANTHA, et al. Metal induced conformational changes in human insulin: crystal structure of Sr2+, Ni2+ and Cu2+ complexes of human insulin[J]. Protein Pept. Lett., 2011, 18(5): 457-466.
|
[14] |
VAN DER S D, LINDAHL E. GROMACS: fast, flexible and free[J]. J. Comput. Chem., 2005, 26(16): 1701-1718.
|
[15] |
VYTATUAS G, SERVAAS M, DANIEL S. Automated protein structure and topology generation for alchemical perturbations [J]. J. Comput. Chem., 2015, 36(5): 348-354.
|
[16] |
ALEXEI M N, YURY V M, ALEXANDER P L. A new AMBER-compatible force field parameter set for alkanes[J]. J. Mol. Model., 2014, 20(3): 1-10.
|
[17] |
PEIKUN Y. Incroporation of the TIP4P water model into a continuum solvate for computing salvation free energy [J]. Chem. Phys., 2014, 443: 93-106.
|
[18] |
WANG H, DOMMERT F, HOLM C. Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency[J]. Chem. Phys., 2010, 133(3): 034117-034128.
|
[19] |
HESS B, BEKKER H, BERENDSEN H J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Comput. Chem., 1997, 18(12): 1463 -1472.
|
[20] |
RENTENIER A, MORETTO-CAPELLE P, BORDENAVE- MONTESQUIEU D, et al. Analysis of fragment size distributions in collision of monocharged ions with the C60 molecule[J]. J. Phys. B: At., Mol. Opt. Phys., 2005, 38(7): 789-806.
|
[21] |
ANIRBAN M, CHARUSITA C. Effect of the Berendsen thermostat on the dynamical properties of water [J]. Mol. Phys., 2004, 102(7): 681-685.
|
[22] |
BUSSI G, ZYKOVA-TIMAN T, PARRINELLO M. Isothermal- isobaric molecular dynamics using stochastic velocity rescaling[J]. Chem. Phys., 2009, 130(7): 074101-074109.
|
[23] |
HALDER A, SUROLIA A, MUKHOPADHYAY C. Dynamics simulation of soybean agglutinin (SBA) dimer reveals the impact of glycosylation on its enhanced structural stability[J]. Carbohydrate Research , 2016, 428: 8-17.
|
[24] |
杨程, 卢滇楠, 张敏莲, 等. 分子动力学模拟二硫键对胰岛素构象稳定性的影响[J]. 化工学报, 2010, 61(4): 929-934. YANG C, LU D N, ZHANG M L, et al. Molecular dynamjcs simulation of impact of disulfide bridge on conlbrmational stability of insulin[J]. CIESC Journal, 2010, 61(4): 929-934.
|
[25] |
LIU F F, DONG X Y, WANG T, et al. Rational design of peptide ligand for affinity chromatography of tissue-type plasminogen activator by the combination of docking and molecular dynamics simulations[J]. J. Chromatography A, 2007, 1175: 249-258.
|
[26] |
白姝, 常颖, 刘小娟, 等. 海藻糖与氨基酸之间相互作用的分子动力学模拟[J]. 物理化学学报, 2014, 30(7): 1239-1246. BAI S, CHANG Y, LIU X J, et al. Interactions between trehalose and amino acids by molecular dynamics simulations[J]. Acta Phys. -Chim. Sin. , 2014, 30(7): 1239-1246.
|
[27] |
TAREK M, TOBIAS D J. Single-particle and collective dynamics of protein hydration water: a molecular dynamics study[J]. Physical Review Letters, 2002, 89(27): 131-142.
|
[28] |
DASTIDAR S G, MUKHOPADHYAY C. Structure, dynamics, and energetics of water at the surface of a small globular protein: a molecular dynamics simulation[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics 2003, 68(1): 125-149.
|
[29] |
娄文勇, 宗敏华. 离子液体的组成及溶剂性质与木瓜蛋白酶催化特性的关系[J]. 高等学校化学学报, 2007, 28(7): 1283-1287. LOW W Y, ZONG M H. Correlation between catalytic characteristics of papain and components and solvent properties of ionic liquids[J]. Chem. J. Chinese Universities, 2007, 28(7): 1283-1287.
|