[1] |
邢佳韵, 彭浩, 张艳飞, 等. 世界锂资源供需形势展望[J]. 资源科学, 2015, 37(5): 988-997.XING J Y, PENG H, ZHANG Y F, et al. Prospects for the world lithium resource supply and demand[J]. Resources Science, 2015, 37(5): 988-997.
|
[2] |
HAN Y, KIM H, PARK J. Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater[J]. Chem. Eng. J., 2012, 210(11): 482-489.
|
[3] |
TIAN L Y, MA W, HAN M. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide[J]. Chem. Eng. J., 2010, 156(1): 134-140.
|
[4] |
CHUNG K S, LEE J C, KIM W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater[J]. J. Membrane Sci., 2008, 325(2): 503-508.
|
[5] |
刘骆峰, 张雨山, 黄西平, 等. 海水卤水提锂高效吸附剂的合成及应用研究[J]. 化学工业与工程, 2010, 27(2): 138-143.LIU L F, ZHANG Y S, HUANG X P, et al. Synthesis and application of efficient adsorbent for lithium extraction from seawater and brines[J]. Chemical Industry and Engineering, 2010, 27(2): 138-143.
|
[6] |
董殿权, 刘维娜, 刘亦凡. LiNi0.05Mn1.95O4的合成及其对Li+的离子交换热力学[J]. 物理化学学报, 2009, 25(7): 1279-1284.DONG D Q, LIU W N, LIU Y F. Synthesis of LiNi0.05Mn1.95O4 and its ion-exchange kinetics for Li+[J]. Acta Phy.-Chim.Sin., 2009, 25(7): 1279-1284.
|
[7] |
KENTA O, TAKAHIDE N, SYOUHEI N, et al. Synergistic solvent impregnated resin for adsorptive separation of lithium ion[J]. Ind Eng Chem. Res., 2010, 49(14): 6554-6558.
|
[8] |
李超, 肖伽励, 孙淑英, 等. 球形离子筛吸附剂的制备及其锂吸附性能评价[J]. 化工学报, 2014, 65(1): 220-226.LI C, XIAO J L, SUN S Y, et al. Preparation and lithium adsorption evaluation for spherical ion-sieve granulated by agarose[J]. CIESC Journal, 2014, 65(1): 220-226.
|
[9] |
ALLEN J L, JOW T R, WOLFENSTINE J. Low temperature performance of nanophase Li4Ti5O12[J]. J. Power Sources, 2006, 159(2): 1340-1345.
|
[10] |
HAO Y J, LAI Q, LU J Z, et al. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method[J]. J. Power Sources, 2006, 158(2): 1358-1364.
|
[11] |
HU X B, DENG Z H, SUO J H, et al. A high rate, high capacity and long life (LiMnO4+AC)/Li4Ti5O12 hybrid battery-supercapacitor[J]. J. Power Sources, 2009, 187(2): 635-639.
|
[12] |
SHI X, ZHENG Z B, ZHOU D F, et al. Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties[J]. Trans. Nonferrous Met. Soc. China, 2013, 23(1): 253-259.
|
[13] |
ALIAS N A, KUFIAN M Z, TEO L P, et al. Synthesis and characterization of Li4Ti5O12[J]. J. Alloy Compd., 2009, 486(1/2): 645-648.
|
[14] |
赵鹏, 姚彩珍, 樊小勇. 共沉淀法合成Li4Ti5O12及其性能研究[J]. 无机盐工业, 2010, 42(8): 34-36.ZHAO P, YAO C Z, FAN X Y. Synthesis of Li4Ti5O12 by co-precipitation method and study on its performances[J]. Inogeanic Chemicals Industry, 2010, 42(8): 34-36.
|
[15] |
PRAKASH A S, MANIKANDAN P, RAMESHA K. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode[J]. Chem. Mater., 2010, 22(9): 2857-2863.
|
[16] |
VENKATESWARLU M, CHEN C H, DO J S, et al. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy[J]. J. Power Sources, 2005, 146(1/2): 204-208.
|
[17] |
WANG X J, LI X H, WANG Z X, et al. Preparation and characterization of Li4Ti5O12 from ilmenite[J]. Powder Technol., 2010, 204(2/3): 198-202.
|
[18] |
ALDON L, KUBIAK P, WOMES M, et al. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel[J]. Chem. Mater., 2004, 16(26): 5721-5725.
|
[19] |
ZHANG Y Y, WANG D, WANG Y Y. Synthesis of Zr doped Li4Ti5O12 by a high-energy ball-milling modified solid-state method[J]. Rare Metal Mat. Eng., 2014, 43(9): 2237-2240.
|
[20] |
MA L, CHEN B Z, SHI X C, et al. Stability and Li+ extraction/adsorption properties of LiMxMn2-xO4 (M=Ni, Al, Ti: 0≤x≤1) in aqueous solution[J]. Colloid Surface A, 2010, 369(1/2/3): 88-94.
|
[21] |
MARKUS A, WOLFGANG B, DOROTHEA M, et al. Synthesis and size control of polystyrene latices via polymerization in microemulsion[J]. Macromolecules, 1991, 24(25): 6636-6643.
|
[22] |
ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J. Power Sources, 1999, 8l/82(9): 300-305.
|
[23] |
PROSINI P P, MANCINI R, PETRUCCI L, et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144(1/2): 185-192.
|
[24] |
MATSUI E, ABE Y, SENNA M, et al. Solid-state synthesis of 70 nm Li4Ti5O12 particles by mechanically activating intermediates with amino acids[J]. J. Eur. Ceram. Soc., 2008, 91(5): 1522-1527.
|
[25] |
YANG L X, CHENG L H. Preparation method of three-dimensional ordered macroporous titanium oxide “lithium ion sieve”: 101342479[P]. 2008-10-03.
|
[26] |
童辉, 孙育斌, 陈永熙, 等. 溶胶-凝胶法合成锂离子筛前体LiMn2O4的研究[J]. 化工新型材料, 2004, 32(4): 33-35.TONG H, SUN Y B, CHEN Y X, et al. Study on synthesis of Li ionic sieve precursor LiMn2O4 by sol-gel method[J]. New Chemical Materials, 2004, 32(4): 33-35.
|
[27] |
纪志永, 许长春, 袁俊生, 等. 尖晶石型锂离子筛研究进展[J]. 化工进展, 2005, 24(12): 1336-1341.JI Z Y, XU C C, YUAN J S, et al. Progress of study on spinel lithium ion-sieve[J]. Chem. Ind. Eng. Prog., 2005, 24(12): 1336-1341.
|
[28] |
DONG D Q, ZHENG J G, HAN X L. Synthesis and ion exchange properties for Cs+ of ammonium-type mordenite[J]. Rare Metals, 2015, 34(10): 752-756.
|
[29] |
WANG L, MENG C G, MA W. Study on Li+ uptake by lithium ion-sieve via the pH technique[J]. Colloid. Surface A, 2009, 334(1/2/3): 34-39.
|
[30] |
董殿权, 张凤宝, 张国亮, 等. Li4Ti5O12的合成及对Li+的离子交换动力学[J]. 物理化学学报, 2007, 23(6): 950-954.DONG D Q, ZHANG F B, ZHANG G L, et al. Synthesis of Li4Ti5O12 and its kinetics for lithium ion exchange[J]. Acta Phy. -Chim. Sin., 2007, 23(6): 950-954.
|
[31] |
董殿权. 离子交换剂的合成及交换机理研究[D]. 天津: 天津大学, 2006.DONG D Q. Study on synthesis and exchange mechanism of ion exchangers[D]. Tianjin: Tianjin University, 2006.
|
[32] |
SEARS J A, YANG Z G, GRAFF G L, et al. Lithium diffusion in Li4Ti5O12 at high temperatures[J]. J. Power Sources, 2011, 196(4): 2211-2220.
|