[1] |
AGENCY I E. Energy Technology Perspectives 2012: Pathways to a Clean Energy System[M]. International Energy Agency, 2012.
|
[2] |
RIAN K E, GRIMSMO B, LAKSA B, et al. Advanced CO2 dispersion simulation technology for improved CCS safety[J]. Energy Procedia, 2014, 63: 2596-2609.
|
[3] |
WEE J H. A review on carbon dioxide capture and storage technology using coal fly ash[J]. Appl. Energ., 2013, 106(11): 143-151.
|
[4] |
KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Quantitative risk assessment of CO2 transport by pipelines—a review of uncertainties and their impacts[J]. J. Hazard. Mater., 2010, 177(1/2/3): 12-27.
|
[5] |
MOLAG M, DAM C. Modelling of accidental from a high pressure CO2 pipelines[J]. Energy Procedia, 2011, 4: 2301-2307.
|
[6] |
GANT S E, NARASIMHAMURTHY V D, SKJOLD T, et al. Evaluation of multi-phase atmospheric dispersion models for application to carbon capture and storage[J]. J. Loss Prevent. Proc., 2014, 32: 286-298.
|
[7] |
UDDIN M, JAFARI A, PERKINS E. Effects of mechanical dispersion on CO2 storage in Weyburn CO2-EOR field—numerical history match and prediction[J]. Int. J. Greenh. Gas Con., 2013, 16(8): S35-S49.
|
[8] |
WITLOX H W M, HARPER M, OKE A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases[J]. J. Loss Prevent. Proc., 2009, 22(6): 795-802.
|
[9] |
LUND H, FLATTEN T, MUNKEJORD S T. Depressurization of carbon dioxide in pipelines models and methods[J]. Energy Procedia, 2011, 4(22): 2984-2991.
|
[10] |
MAZZOLDI A, HILL T, COLLS J J. Assessing the risk for CO2 transportation within CCS projects, CFD modelling[J]. Int. J. Greenh. Gas Con., 2011, 5(4): 816-825.
|
[11] |
MAZZOLDI A, PICARD D, SRIRAM P G, et al. Simulation-based estimates of safety distances for pipeline transportation of carbon dioxide[J]. Greenhouse Gases Science & Technology, 2013, 3(1): 66-83.
|
[12] |
MAZZOLDI A, HILL T, COLLS J J. CO2 transportation for carbon capture and storage: sublimation of carbon dioxide from a dry ice bank[J]. Int. J. Greenh. Gas Con., 2008, 2(2): 210-218.
|
[13] |
HERZOG N, EGBERS C. Atmospheric dispersion of CO2, released from pipeline leakages[J]. Energy Procedia, 2013, 40: 232-239.
|
[14] |
WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain[J]. Int. J. Greenh. Gas Con., 2014, 27(8): 221-238.
|
[15] |
WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. Experimental measurement and Reynolds-averaged Navier-Stokes modelling of the near-field structure of multi-phase CO2 jet releases[J]. Int. J. Greenh. Gas Con., 2013, 18(7): 139-149.
|
[16] |
WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. CO2 PipeHaz: quantitative hazard assessment for next generation CO2 pipelines[J]. Energy Procedia, 2014, 63: 2510-2529.
|
[17] |
刘振翼, 周轶, 黄平, 等. CO2管线泄漏扩散小尺度实验研究[J]. 化工学报, 2012, 63(5): 1651-1659.
|
|
LIU Z Y, ZHOU Y, HUANG P, et al. Scaled field test for CO2 leakage and dispersion from pipelines[J]. CIESC Journal, 2012, 63(5): 1651-1659.
|
[18] |
XING J, LIU Z Y, HUANG P, et al. Experimental and numerical study of the dispersion of carbon dioxide plume[J]. J. Hazard. Mater., 2013, 257(1): 40-48.
|
[19] |
XING J, LIU Z Y, HUANG P, et al. CFD validation of scaling rules for reduced-scale field releases of carbon dioxide[J]. Appl. Energ., 2014, 115(4): 525-530.
|
[20] |
XIE Q Y, TU R, JIANG X, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Appl. Energ., 2014, 130(5): 574-580.
|
[21] |
李康. 小尺度超临界二氧化碳泄漏过程物理机理研究[D]. 合肥: 中国科学技术大学, 2016.
|
|
LI K. The physical mechanism of the supercritical CO2 leakage process in small scale laboratory conditions[D]. Hefei: University of Science and Technology of China, 2016.
|
[22] |
LI K, ZHOU X, TU R, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71(21): 665-672.
|
[23] |
LI K, ZHOU X, TU R, et al. An experiment investigation of supercritical CO2 accidental release from a pressurized pipeline[J]. J. Supercrit. Fluid, 2016, 107: 298-306.
|
[24] |
AHMAD M, LOWESMITH B, KOEIJER G D, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. Int. J. Greenh. Gas Con., 2015, 37: 340-353.
|
[25] |
LIU X, GODBOLE A, CHENG L, et al. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state[J]. Appl. Energ., 2014, 126: 56-58.
|
[26] |
LIU X, GODBOLE A, LU C, et al. Study of the consequences of CO2 released from high-pressure pipelines[J]. Atmospheric Environment, 2015, 116: 51-64.
|
[27] |
喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334.
|
|
YU J L, GUO X L, YAN X Q, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334.
|
[28] |
GUO X L, YAN X Q, YU J L, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale popeline[J]. Energy, 2017, 118: 1066-1078.
|
[29] |
GUO X L, YAN X Q, YU J L, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline[J]. Appl. Energ., 2016, 183: 1279-1291.
|
[30] |
GUO X L, YAN X Q, YU J L, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Appl. Energ., 2016, 178: 189-197.
|