[1] |
杨小梅, 刘文琦, 杨俊. 基于分阶段的LSSVM发酵过程建模[J]. 化工学报, 2013, 64(9):3262-3269. YANG X M, LIU W Q, YANG J. LSSVM modeling for fermentation process based on dividing stages[J]. CIESC Journal, 2013, 64(9):3262-3269.
|
[2] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3):788-800.
|
[3] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers and Chemical Engineering, 2009, 33(4):795-814.
|
[4] |
雷瑜, 杨慧中. 基于高斯过程和贝叶斯决策的组合模型软测量[J]. 化工学报, 2013, 64(12):4434-4438. LEI Y, YANG H Z. Combination model soft sensor based on Gaussian process and Bayesian committee machine[J]. CIESC Journal, 2013, 64(12):4434-4438.
|
[5] |
CAO P F, LUO X L. Modeling for soft sensor systems and parameters updating online[J]. Journal of Process Control, 2014, 24(6):975-990.
|
[6] |
JIN H P, CHEN X G, WANG L, et al. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(30):7320-7345.
|
[7] |
CAO P F, LUO X L. Soft sensor model derived from wiener model structure:modeling and identification[J]. Chinese Journal of Chemical Engineering, 2014, 22(5):538-548.
|
[8] |
GUO Y F, ZHAO Y, HUANG B. Development of soft sensor by incorporating the delayed infrequent and irregular measurements[J]. Journal of Process Control, 2014, 24(11):1733-1739.
|
[9] |
LIU J L. Developing a soft sensor based on sparse partial least squares with variable selection[J]. Journal of Process Control, 2014, 24(7):1046-1056.
|
[10] |
GE Z Q, HUANG B, SONG Z H. Mixture semi-supervised principal component regression model and soft sensor application[J]. AIChE Journal, 2014, 60(2):533-545.
|
[11] |
YAN X D, YANG W, MA H H, et al. Soft sensor for ammonia concentration at the ammonia converter outlet based on an improved group search optimization and BP neural network[J]. Chinese Journal of Chemical Engineering, 2012, 20(6):1184-1190.
|
[12] |
JIN X, WANG S Y, HUANG B, et al. Multiple model based LPV soft sensor development with irregular/missing process output measurement[J]. Control Engineering Practice, 2012, 20(2):165-172.
|
[13] |
LIU Y, GAO Z L, LI P, et al. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(11):4313-4327.
|
[14] |
SHAO W M, TIAN X M, WANG P. Soft sensor development for nonlinear and time-varying processes based on supervised ensemble learning with improved process state partition[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(2):282-296.
|
[15] |
LIU Y Q, HUANG D P, LI Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial & Engineering Chemistry Research, 2012, 51(8):3356-3367.
|
[16] |
WANG L, JIN H P, CHEN X G, et al. Soft sensor development based on the hierarchical ensemble of Gaussian process regression models for nonlinear and non-Gaussian chemical processes[J]. Industrial & Engineering Chemistry Research 2016, 55(28):7704-7719.
|
[17] |
MA M D, WANG S J, WU M F, et al. Development of adaptive soft sensor based on statistical identification of key variables[J]. Control Engineering Practice, 2009, 17(9):1026-1034.
|
[18] |
LI X L, SU H Y, CHU J. Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine[J]. Chinese Journal of Chemical Engineering, 2009, 17(1):95-99.
|
[19] |
LIU J L. On-line soft sensor for polyethylene process with multiple production grades[J]. Control Engineering Practice, 2007, 15(7):769-778.
|
[20] |
VALIANT L G. A theory of the learnable[J]. Communications of the ACM, 1984, 27(22):1134-1142.
|
[21] |
SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2):197-227.
|
[22] |
FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application of boosting[J]. Journal of Computer and System Sciences, 1997, 55(1):119-139.
|
[23] |
FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. The Annuals of Statistics, 2001, 29(5):1189-1232.
|
[24] |
FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics and Data Analysis, 2002, 38(4):367-378.
|
[25] |
CAO D S, XU Q S. The boosting:a new idea of building models[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 100(1):1-11.
|
[26] |
SUI Y, ZHANG L. Visual tracking via locally structured Gaussian process regression[J]. IEEE Signal Processing Letters, 2015, 22(9):1331-1335.
|
[27] |
LIU Y, CHEN T, CHEN J H. Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions[J]. Industrial & Engineering Chemistry Research, 2015, 54(18):5037-5047.
|
[28] |
YAN W J, HU S Q, CHEN T, et al. Bayesian migration of Gaussian process regression for rapid process modeling and optimization[J]. Chemical Engineering Journal, 2011, 166(3):1095-1103.
|
[29] |
GAO Y B, KONG X Y. Multivariate data modeling using modified kernel partial least squares[J]. Chemical Engineering Research and Design, 2015, 94(1):466-474.
|
[30] |
ZHANG M H, XU Q S, MASSART D L. Boosting partial least squares[J]. Analytical Chemistry, 2005, 77(5):1423-1431.
|