[1] |
SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958.
|
[2] |
XIANG X, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36):5343-5364.
|
[3] |
PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8):2338.
|
[4] |
PALACIN M R. Recent advances in rechargeable battery materials:a chemist's perspective[J]. Chemical Society Reviews, 2009, 38:2565-2575.
|
[5] |
HOSONO E, MATSUDA H, HONMA I, et al. Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge-discharge Li ion battery[J]. Journal of Power Sources, 2008, 182(1):349-352.
|
[6] |
DOEFF M M, RICHARDSON T J, KEPLEY L. Lithium insertion processes of orthorhombic NaxMnO2-based electrode materials[J]. Journal of the Electrochemical Society, 1996, 143(8):2507-2516.
|
[7] |
DOEFF M M, PENG M Y, MA Y, et al. Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries[J]. Journal of the Electrochemical Society, 1994, 141(11):L145-L147.
|
[8] |
WANG C H, YEH Y W, WONGITTHAROM N, et al. Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes[J]. Journal of Power Sources, 2015, 274(15):1016-1023.
|
[9] |
ZHAN P, WANG S, YUAN Y, et al. Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162:A1028-A1032.
|
[10] |
DEMIREL S, OZ E, ALTIN E, et al. Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries[J]. Materials Characterization, 2015, 105:104-112.
|
[11] |
HOSONO E, SAITO T, HOSHINO J, et al. High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode[J]. Journal of Power Sources, 2012, 217(0):43-56.
|
[12] |
RUFFO R, FATHI R, KIM D J, et al. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte[J]. Electrochimica Acta, 2013, 108(1):575-582.
|
[13] |
DAI K, MAO J, SONG X, et al. Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method[J]. Journal of Power Sources, 2015, 285:161-168.
|
[14] |
ZHAO L, NI J, WANG H, et al. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries[J]. RSC Advances, 2013, 3:6650-6655
|
[15] |
KIM H, KIM D J, SEO D H, et al. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery[J]. Chemistry of Materials, 2012, 24(6):1205-1211.
|
[16] |
QIAO R, DAI K, MAO J, et al. Revealing and suppressing surface Mn(Ⅱ) formation of Na0.44MnO2 electrodes for Na-ion batteries[J]. Nano Energy, 2015, 16:186-195.
|
[17] |
CHEN L, GU Q, ZHOU X, et al. New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes[J]. Scientific Reports, 2013, 3:1946.
|
[18] |
WHITACRE J F, TEVAR A, SHARMA S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochemistry Communications, 2010, 12(3):463-466.
|
[19] |
LEE J H, BLACK R, POPOV G, et al. The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium-oxygen batteries[J]. Energy & Environmental Science, 2012, 5(11):9558.
|
[20] |
HOSONO E, MATSUDA H, SAITO T, et al. Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery[J]. Journal of Power Sources, 2010, 195(20):7098-7101.
|
[21] |
LI Y, WU Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets[J]. Nano Research, 2010, 2(1):54-60.
|
[22] |
LIU C, LI J, ZHAO P, et al. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties[J]. Journal of Nanoparticle Research, 2015, 17(3):1-8.
|
[23] |
LIU C, GUO W L, WANG Q H, et al. Parametric study of hydrothermal soft chemical synthesis and application of Na0.44MnO2 nanorods for Li-ion battery cathode materials:synthesis conditions and electrochemical performance[J]. Journal of Alloys and Compounds, 2016, 658:588-594.
|
[24] |
XIA G G, TONG W, TOLENTINO E N, et al. Synthesis and characterization of nanofibrous sodium manganese oxide with a 2×4 tunnel structure[J]. Chemistry of Materials, 2001, 13(5):1585-1592.
|
[25] |
LIANG Y, WU D, FENG X, et al. Dispersion of graphene sheets in organic solvent supported by ionic interactions[J]. Advanced Materials, 2009; 21(17):1679-1683.
|
[26] |
FENG Q, YANAGISAWA K, YAMASAKI N. Transformation of manganese oxides from layered structures to tunnel structures[J]. Chemical Communications, 1996, 12(3):1607-1608.
|
[27] |
FENG Q, HORIUCHI T, LIU L, et al. Hydrothermal soft chemical synthesis of tunnel manganese oxides with Na+ as Template[J]. Chemistry Letters, 2000, 29(3):284-285.
|
[28] |
LEGOFF P, BAFFIER N, BACH S, et al. Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group[J]. Materials Research Bulletin, 1996, 31(1):63-75.
|
[29] |
SAUVAGE F, LAFFONT L, TARASCON J M, et al. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2[J]. Inorganic Chemistry, 2007, 46(8):3289-3294.
|
[30] |
LANSON B, DRITS V A, FENG Q, et al. Structure of synthetic Na-birnessite:Evidence for a triclinic one-layer unit cell[J]. American Mineralogist, 2002, 87(11/12):1662-1671.
|