CIESC Journal ›› 2017, Vol. 68 ›› Issue (8): 2991-2997.DOI: 10.11949/j.issn.0438-1157.20161715

Previous Articles     Next Articles

Visualization of controlled cryogenic fluids' liquefaction and solidification by cryocooler

ZHOU Shaohua1, HUANG Yonghua1, ZHUAN Rui2, CHEN Hong3, GAO Xu3   

  1. 1 Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China;
    2 Shanghai Institute of Aerospace Systems Engineering, Shanghai 201108, China;
    3 State Key Laboratory of Aerospace Cryogenic Propellant, Beijing 100028, China
  • Received:2016-12-06 Revised:2017-05-07 Online:2017-08-05 Published:2017-08-05
  • Supported by:

    supported by the Shanghai Academy of Spaceflight Technology -Joint Research Center for Advanced Aerospace Technology, Shanghai Jiao Tong University (USCAST2016-32), the Open Research Fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants (SKLTSCP1507-W) and the National Natural Science Foundation of China (51676118).

基于低温制冷机的流体液化与凝固过程可视化装置

周绍华1, 黄永华1, 耑锐2, 陈虹3, 高旭3   

  1. 1 上海交通大学制冷与低温工程研究所, 上海 200240;
    2 上海宇航系统工程研究所, 上海 201108;
    3 航天低温推进剂国家重点实验室, 北京 100028
  • 通讯作者: 黄永华
  • 基金资助:

    上海航天技术研究院-上海交大航天先进技术联合研究中心资助项目(USCAST2016-32);航天低温推进剂国家重点实验室开放课题(SKLTSCP1507-W);国家自然科学基金项目(51676118)。

Abstract:

Liquefaction and solidification are two common phenomena in engineering fluid systems. The low temperatures of the boiling point and melting point of cryogenic fluids make it relatively difficult to observe the liquefaction and solidification processes under controlled conditions. An experimental setup for visualization of such processes has been designed and fabricated to capture the moments of the vapor-liquid and liquid-solid phase transition of nitrogen (44-80 K), argon (50-90 K) and oxygen (50-90 K), based on a G-M cryocooler as the cold source. The experimental results showed that these three cryogenic fluids behave considerably different during the solidification process.

Key words: cryogenic fluid, liquefaction, solidification, temperature control, visualization

摘要:

液化和凝固是流体系统工程中常见的两种基本现象。由于低温流体液化点和凝固点温度都非常低,给受控条件下观测流体的液化和凝固过程带来了困难。设计并搭建了基于G-M低温制冷机的流体受控液化和凝固过程可视化实验装置,并对氮气(44~80 K)、氩气(50~90 K)、氧气(50~90 K)3种低温流体的液化和凝固过程进行控制观测,获得了3种流体在一定温度下的相变过程的视频图像。实验结果表明,3种低温流体的凝固过程表现出较明显的固化行为特性差异。

关键词: 低温流体, 液化, 凝固, 温度控制, 可视化

CLC Number: