CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3228-3238.DOI: 10.11949/0438-1157.20201579
• Reviews and monographs • Previous Articles Next Articles
GUO Haijun1,2,3,4(),ZHANG Hairong1,2,3,4,DING Shuai1,2,3,4,5,LI Hailong1,2,3,4,PENG Fen1,2,3,4,XIONG Lian1,2,3,4,CHEN Xinde1,2,3,4()
Received:
2020-11-03
Revised:
2020-12-02
Online:
2021-06-05
Published:
2021-06-05
Contact:
CHEN Xinde
郭海军1,2,3,4(),张海荣1,2,3,4,丁帅1,2,3,4,5,黎海龙1,2,3,4,彭芬1,2,3,4,熊莲1,2,3,4,陈新德1,2,3,4()
通讯作者:
陈新德
作者简介:
郭海军(1986—),男,博士,副研究员,基金资助:
CLC Number:
GUO Haijun, ZHANG Hairong, DING Shuai, LI Hailong, PENG Fen, XIONG Lian, CHEN Xinde. Research progress on lignocellulose liquefaction in polyhydric alcohol and upgrading of liquefaction product[J]. CIESC Journal, 2021, 72(6): 3228-3238.
郭海军, 张海荣, 丁帅, 黎海龙, 彭芬, 熊莲, 陈新德. 木质纤维素多元醇液化及液化产物提质的研究进展[J]. 化工学报, 2021, 72(6): 3228-3238.
Add to citation manager EndNote|Ris|BibTeX
97 | Zou X H, Chen T H, Zhang P, et al. High catalytic performance of Fe-Ni/palygorskite in the steam reforming of toluene for hydrogen production[J]. Applied Energy, 2018, 226: 827-837. |
98 | Lycourghiotis S, Kordouli E, Sygellou L, et al. Nickel catalysts supported on palygorskite for transformation of waste cooking oils into green diesel[J]. Applied Catalysis B-Environmental, 2019, 259: 118059. |
99 | Wang X Y, Qin G X, Li C, et al. Hydrogen production from catalytic microwave-assisted pyrolysis of corncob over transition metal (Fe, Co and Ni) modified palygorskite[J]. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 126-132. |
100 | Wu M, Xu Y, Jang J, et al. Preparation of Pd-B/palygorskite amorphous catalyst for the selective hydrogenation of o-chloronitrobenzene to o-chloroaniline[J]. Micro & Nano Letters, 2016, 11(6): 315-318. |
101 | Guo H J, Zhang H R, Chen X F, et al. Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst[J]. Energy Conversion & Management, 2018, 156: 130-139. |
102 | Rezzoug S A, Capart R. Liquefaction of wood in two successive steps: solvolysis in ethylene-glycol and catalytic hydrotreatment[J]. Applied Energy, 2002, 72(3/4): 631-644. |
103 | Liu X R, Wang X C, Yao S X, et al. Recent advances in the production of polyols from lignocellulosic biomass and biomass-derived compounds[J]. RSC Advances, 2014, 4(90): 49501-49520. |
1 | Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy & Environmental Science, 2011, 4(1): 83-99. |
2 | Brown T R. A techno-economic review of thermochemical cellulosic biofuel pathways[J]. Bioresource Technology, 2015, 178: 166-176. |
104 | Cheng S Y, Wei L, Rabnawaz M. Catalytic liquefaction of pine sawdust and in-situ hydrogenation of bio-crude over bifunctional Co-Zn/HZSM-5 catalysts [J]. Fuel, 2018, 223: 252-260. |
105 | Wang J D, Li W Z, Wang H Z, et al. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst [J]. Bioresource Technology, 2017, 243: 100-106. |
3 | 许文茸, 张洁, 郑凤昳, 等. 纤维素与甲壳素常压酸催化液化生成小分子化学品的机理研究进展[J]. 化工学报, 2018, 69(4): 1288-1298. |
Xu W R, Zhang J, Zheng F Y, et al. Research progress on mechanisms of acid-catalyzed cellulose and chitin liquefaction to small molecular chemicals under atmospheric pressure[J]. CIESC Journal, 2018, 69(4): 1288-1298. | |
106 | Ma Q H, Chen D D, Wei L F, et al. Bio-oil production from hydrogenation liquefaction of rice straw over metal (Ni, Co, Cu)-modified CeO2 catalysts [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 40(2): 200-206. |
4 | Pan H. Synthesis of polymers from organic solvent liquefied biomass: a review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(7): 3454-3463. |
5 | 孟繁蓉, 李瑞松, 张玉苍. 木质类废弃物液化及其高效利用研究进展[J]. 化工进展, 2016, 35(6): 1905-1913. |
Meng F R, Li R S, Zhang Y C. Research progress on liquefaction of lignocellulosic waste and its efficient application [J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1905-1913. | |
6 | D'souza J, Yan N. Producing bark-based polyols through liquefaction: effect of liquefaction temperature[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 534-540. |
7 | D'souza J, Camargo R, Yan N. Biomass liquefaction and alkoxylation: a review of structural characterization methods for bio-based polyols[J]. Polymer Reviews, 2017, 57(4): 668-694. |
8 | Hu S J, Luo X L, Li Y B. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass[J]. ChemSusChem, 2014, 7(1): 66-72. |
9 | van Rossum G, Zhao W, Castellvi Barnes M, et al. Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening[J]. ChemSusChem, 2014, 7(1): 253-259. |
10 | Zhang T, Zhou Y J, Liu D H, et al. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol[J]. Bioresource Technology, 2007, 98(7): 1454-1459. |
11 | Zhang H R, Ding F, Luo C R, et al. Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols[J]. Industrial Crops and Products, 2012, 39: 47-51. |
12 | Yamada T, Aratani M, Kubo S, et al. Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate[J]. Journal of Wood Science, 2007, 53(6): 487-493. |
13 | Jo Y J, Ly H V, Kim J, et al. Preparation of biopolyol by liquefaction of palm kernel cake using PEG#400 blended glycerol [J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 304-313. |
14 | Pan H, Zheng Z F, Hse C Y. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams[J]. European Journal of Wood & Wood Products, 2012, 70(4): 461-470. |
15 | Kržan A, Žagar E. Microwave driven wood liquefaction with glycols[J]. Bioresource Technology, 2009, 100(12): 3143-3146. |
16 | 李改云, 朱显超, 邹献武, 等. 5种生物质的微波辅助多元醇液化研究[J]. 林产化学与工业, 2015, 35(1): 107-112. |
Li G Y, Zhu X C, Zou X W, et al. Microwave-assisted liquefaction of five types of biomass in polyhydric alcohols[J]. Chemistry & Industry of Forest Products, 2015, 35(1): 107-112. | |
17 | Zhang H R, Yang H J, Guo H J, et al. Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols[J]. Applied Energy, 2014, 113: 1596-1600. |
18 | Lee S H, Teramoto Y, Shiraishi N. Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity[J]. Journal of Applied Polymer Science, 2002, 83(7): 1482-1489. |
19 | Gong G Z, Zou X C. Preparation and characterization of biopolyol via liquefaction of rice straw[J]. Russian Journal of Applied Chemistry, 2016, 89(8): 1360-1364. |
20 | Zhang H R, Luo J, Li Y Y, et al. Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol[J]. Applied Biochemistry and Biotechnology, 2013, 170(7): 1780-1791. |
21 | Kurimoto Y, Doi S, Tamura Y. Species effects on wood-liquefaction in polyhydric alcohols[J]. Holzforschung, 1999, 53(6): 617-622. |
22 | Hassan E B M, Shukry N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues[J]. Industrial Crops and Products, 2008, 27(1): 33-38. |
23 | Kim K H, Jo Y J, Lee C G, et al. Solvothermal liquefaction of microalgal Tetraselmis sp. biomass to prepare biopolyols by using PEG#400-blended glycerol[J]. Algal Research-Biomass Biofuels and Bioproducts, 2015, 12: 539-544. |
24 | Yao Y, Yoshioka M, Shiraishi N. Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent[J]. Mokuzai Gakkaishi, 1993, 39(8): 930-938. |
25 | Hu S J, Wan C X, Li Y B. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw[J]. Bioresource Technology, 2012, 103(1): 227-233. |
26 | Hu S J, Li Y B. Polyols and polyurethane foams from acid-catalyzed biomass liquefaction by crude glycerol: effects of crude glycerol impurities[J]. Journal of Applied Polymer Science, 2014, 131(18): 40739. |
27 | Kosmela P, Hejna A, Formela K, et al. The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams[J]. Journal of Polymers and the Environment, 2018, 26(6): 2546-2554. |
28 | Kosmela P, Hejna A, Formela K, et al. Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization[J]. Cellulose, 2016, 23(5): 2929-2942. |
29 | Hu S J, Li Y B. Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams[J]. Bioresource Technology, 2014, 161: 410-415. |
30 | Demirbaş A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion & Management, 2000, 41(6): 633-646. |
31 | Alma M H, Shiraishi N. Preparation of polyurethane-like foams from NaOH-catalyzed liquefied wood[J]. Holz als Roh-und Werkstoff, 1998, 56(4): 245-246. |
32 | Hu S J, Li Y B. Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities[J]. Industrial Crops & Products, 2014, 57(2): 188-194. |
33 | 乐治平, 张宏, 洪立智. 固体超强酸Cl-/Fe2O3的制备及催化液化生物质[J]. 化工进展, 2007, 26(2): 246-248. |
Le Z P, Zhang H, Hong L Z. Liquefaction of biomass by using solid superacid as catalyst[J]. Chemical Industry and Engineering Progress, 2007, 26(2): 246-248. | |
34 | Lu Z X, Zheng H Y, Fan L W, et al. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst[J]. Bioresource Technology, 2013, 142(4): 579-584. |
35 | Lu Z X, Fan L W, Wu Z G, et al. Efficient liquefaction of woody biomass in polyhydric alcohol with acidic ionic liquid as a green catalyst[J]. Biomass & Bioenergy, 2015, 81: 154-161. |
36 | Shao Q, Li H Q, Huang C P, et al. Biopolyol preparation from liquefaction of grape seeds [J]. Journal of Applied Polymer Science, 2016, 133 (34): 43835. |
37 | 梁凌云. 秸秆热化学液化工艺和机理的研究 [D]. 北京: 中国农业大学, 2005. |
Liang L Y. Research on the technique and mechanism of crop stalks thermochemical liquefaction [D]. Beijing: China Agricultural University, 2005. | |
38 | Liu H M, Xie X N, Ren J L, et al. 8-Lump reaction pathways of cornstalk liquefaction in sub- and super-critical ethanol [J]. Industrial Crops and Products, 2012, 35 (1): 250-256. |
39 | Aiouache F, McAleer L, Gan Q, et al. Path lumping kinetic model for aqueous phase reforming of sorbitol [J]. Applied Catalysis A: General, 2013, 466: 240-255. |
40 | Grilc M, Likozar B, Levec J. Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts [J]. Applied Catalysis B: Environmental, 2014, 150/151: 275-287. |
41 | 王娅莉, 战晓青, 解新安, 等. 秸秆纤维素亚/超临界液化中平台化合物的5集总动力学研究 [J]. 造纸科学与技术, 2016, 35 (3): 22-27. |
Wang Y L, Zhan X Q, Xie X A, et al. 5-Lumps kinetics of platform chemical compounds from cellulose liquefaction in sub- and supercritical ethanol [J]. Paper Science & Technology, 2016, 35 (3): 22-27. | |
42 | Chen F G, Lu Z M. Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products[J]. Journal of Applied Polymer Science, 2009, 111(1): 508-516. |
43 | Meng F R, Zhang X X, Yu W F, et al. Kinetic analysis of cellulose extraction from banana pseudo-stem by liquefaction in polyhydric alcohols[J]. Industrial Crops and Products, 2019, 137: 377-385. |
44 | 张海荣, 计红果, 石锦志, 等. 桉树木粉的有机磺酸催化热化学液化研究[J]. 林产化学与工业, 2010, 30(6): 35-39. |
Zhang H R, Ji H G, Shi J Z, et al. Study on liquefaction of eucalyptus wood powder in polyhydric alcohol catalyzed by organic sulfonic acid[J]. Chemistry and Industry of Forest Products, 2010, 30(6): 35-39. | |
45 | Remón J, Broust F, Valette J, et al. Production of a hydrogen-rich gas from fast pyrolysis bio-oils: comparison between homogeneous and catalytic steam reforming routes[J]. International Journal of Hydrogen Energy, 2014, 39(1): 171-182. |
46 | Widayatno W B, Guan G, Rizkiana J, et al. Selective catalytic conversion of bio-oil over high-silica zeolites[J]. Bioresource Technology, 2015, 179: 518-523. |
47 | Wu Q H, Wang Y P, Jiang L, et al. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: co-feeding of soapstock and straw in a downdraft reactor[J]. Bioresource Technology, 2020, 299: 122611. |
48 | Kumar R, Strezov V, Lovell E, et al. Bio-oil upgrading with catalytic pyrolysis of biomass using copper/zeolite-nickel/zeolite and copper-nickel/zeolite catalysts[J]. Bioresource Technology, 2019, 279: 404-409. |
49 | Sanna A, Vispute T P, Huber G W. Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts[J]. Applied Catalysis B Environmental, 2015, 165(10): 446-456. |
50 | Yang Y X, Hao J S, Lv G Q. Comparative study of catalytic hydrodeoxygenation performance over SBA-15 and TiO2 supported 20 wt% Ni for bio-oil upgrading[J]. Fuel, 2019, 253: 630-636. |
51 | Li Z Y, Jiang E C, Xu X W, et al. Hydrodeoxygenation of phenols, acids, and ketones as model bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga[J]. Renewable Energy, 2020, 146: 1991-2007. |
52 | Auersvald M, Shumeiko B, Stas M, et al. Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7080-7093. |
53 | Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today, 2006, 111(1): 119-132. |
54 | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
55 | 郑小娟, 周娅芬, 付海燕, 等. 酯加氢反应中影响羧基活化的因素[J]. 物理化学学报, 2010, 26(10): 2699-2704. |
Zheng X J, Zhou Y F, Fu H Y, et al. Activation factors for the carboxyl group in the hydrogenation of carboxylic esters[J]. Acta Physico-Chimica Sinica, 2010, 26(10): 2699-2704. | |
56 | Chen J H, Wang S R, Lu L, et al. Improved catalytic upgrading of simulated bio-oil via mild hydrogenation over bimetallic catalysts[J]. Fuel Processing Technology, 2018, 179: 135-142. |
57 | Tamura M, Nakagawa Y, Tomishige K. Recent developments of heterogeneous catalysts for selective hydrogenation of unsaturated carbonyl compounds to unsaturated alcohols[J]. Journal of the Japan Petroleum Institute, 2019, 62(3): 106-119. |
58 | Li C Z, Zhao X C, Wang A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
59 | Attia S, Schmidt M C, Schroder C, et al. Keto-enol tautomerization as a first step in hydrogenation of carbonyl compounds[J]. Journal of Physical Chemistry C, 2019, 123(48): 29271-29277. |
60 | Lan X C, Wang T F. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review[J]. ACS Catalysis, 2020, 10(4): 2764-2790. |
61 | Zhang X H, Wang T J, Ma L L, et al. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation[J]. Catalysis Communications, 2013, 33: 15-19. |
62 | 于玉肖, 徐莹, 王铁军, 等. 木质素降解模型化合物愈创木酚及苯酚原位加氢制备环己醇[J]. 燃料化学学报, 2013, 41(4): 443-448. |
Yu Y X, Xu Y, Wang T J, et al. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 443-448. | |
63 | Rodiansono, Khairi S, Hara T, et al. Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts[J]. Catalysis Science & Technology, 2012, 2(10): 2139-2145. |
64 | Yao S X, Wang X C, Jiang Y J, et al. One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 173-180. |
65 | 李辉, 徐烨, 乔明华, 等. 非晶态合金及其催化应用[M]. 北京:科学出版社, 2014. |
Li H, Xu Y, Qiao M H, et al. Amorphous Alloy and their Catalytic Applications[M]. Beijing: Science Press, 2014. | |
66 | Smith G V, Brower W E, Matyjaszczyk M S, et al. Metallic glasses: new catalyst systems [M]//Seivama T, Tanabe K. Studies in Surface Science and Catalysis. Elsevier, 1981: 355-363. |
67 | Li H, Chai W M, Luo H S, et al. Hydrogenation of furfural to furfuryl alcohol over Co-B amorphous catalysts prepared by chemical reduction in variable media[J]. Chinese Journal of Chemistry, 2006, 24(12): 1704-1708. |
68 | Li H, Liu J, Yang H X, et al. Influence of pore structure on catalytic properties of mesoporous silica-supported Co-B amorphous alloys in hydrogenation of cinnamaldehyde to cinnamyl alcohol[J]. Chinese Journal of Chemistry, 2009, 27(12): 2316-2322. |
69 | Li H X, Zhang S Y, Luo H S. A Ce-promoted Ni-B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol[J]. Materials Letters, 2004, 58(22/23): 2741-2746. |
70 | Bai G Y, Niu L B, Zhao Z, et al. Ni-La-B amorphous alloys supported on SiO2 and gamma-Al2O3 for selective hydrogenation of benzophenone[J]. Journal of Molecular Catalysis A: Chemical, 2012, 363/364: 411-416. |
71 | Guo H J, Zhang H R, Tang W C, et al. Furfural hydrogenation over amorphous alloy catalysts prepared by different reducing agents[J]. BioResources, 2017, 12(4): 8755-8774. |
72 | Padmanaban S, Gunasekar G H, Lee M, et al. Recyclable covalent triazine framework-based Ru catalyst for transfer hydrogenation of carbonyl compounds in water[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8893-8899. |
73 | Michel C, Gallezot P. Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds[J]. ACS Catalysis, 2015, 5(7): 4130-4132. |
74 | Hu Q, Yang L, Fan G L, et al. Hydrogenation of biomass-derived compounds containing a carbonyl group over a copper-based nanocatalyst: insight into the origin and influence of surface oxygen vacancies[J]. Journal of Catalysis, 2016, 340: 184-195. |
75 | K S R, Enumula S S, Koppadi K S, et al. Gas phase transfer hydrogenation of α, β- unsaturated carbonyl compounds into saturated carbonyl compounds over supported Cu catalysts[J]. Molecular Catalysis, 2020, 482: 110686. |
76 | Mäki-Arvela P, Hájek J, Salmi T, et al. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J]. Applied Catalysis A: General, 2005, 292: 1-49. |
77 | Nakagawa Y, Tamura M, Tomishige K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. ACS Catalysis, 2013, 3(12): 2655-2668. |
78 | Siddqui N, Sarkar B, Pendem C, et al. Highly selective transfer hydrogenation of α,β-unsaturated carbonyl compounds using Cu-based nanocatalysts[J]. Catalysis Science & Technology, 2017, 7(13): 2828-2837. |
79 | 张跃, 黄波, 严生虎, 等. 丁二酸二乙酯加氢制备1,4-丁二醇的工艺研究[J]. 精细石油化工, 2008, 25(1): 21-24. |
Zhang Y, Huang B, Yan S H, et al. Preparation of 1,4-butanediol by hydrogenation of diethyl succinate[J]. Speciality Petrochemicals, 2008, 25(1): 21-24. | |
80 | Wang Y, Shen Y L, Zhao Y J, et al. Insight into the balancing effect of active Cu species for hydrogenation of carbon–oxygen bonds[J]. ACS Catalysis, 2015, 5(10): 6200-6208. |
81 | Yao Y Q, Wu X Q, Gutiérrez O Y, et al. Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts[J]. Applied Catalysis B: Environmental, 2020, 267: 118698. |
82 | Mo M, Zheng M, Tang J S, et al. Highly active Co: B, Co: Mo(W): B amorphous nanotube catalysts for the selective hydrogenation of cinnamaldehyde[J]. Journal of Materials Science, 2014, 49(2): 877-885. |
83 | Zou J J, Xiong Z Q, Wang L, et al. Preparation of Pd-B/gamma-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene[J]. Journal of Molecular Catalysis A: Chemical, 2007, 271(1/2): 209-215. |
84 | Wen X, Cao Y Y, Qiao X L, et al. Significant effect of base on the improvement of selectivity in the hydrogenation of benzoic acid over NiZrB amorphous alloy supported on gamma-Al2O3[J]. Catalysis Science & Technology, 2015, 5(6): 3281-3287. |
85 | Villaverde M M, Bertero N M, Garetto T F, et al. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts[J]. Catalysis Today, 2013, 213: 87-92. |
86 | Liu B, Qiao M H, Wang J Q, et al. Amorphous Ni-B/SiO2 catalyst prepared by microwave heating and its catalytic activity in acrylonitrile hydrogenation[J]. Journal of Chemical Technology & Biotechnology, 2003, 78(5): 512-517. |
87 | Wang L J, Li W, Zhang M H, et al. The interactions between the NiB amorphous alloy and TiO2 support in the NiB/TiO2 amorphous catalysts[J]. Applied Catalysis A: General, 2004, 259(2): 185-190. |
88 | Liu S C, Liu Z, Wang Z, et al. Characterization and study on performance of the Ru-La-B/ZrO2 amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene under pilot conditions[J]. Chemical Engineering Journal, 2008, 139(1): 157-164. |
89 | Sun H, Jiang H, Li S, et al. Selective hydrogenation of benzene to cyclohexene over nanocomposite Ru-Mn/ZrO2 catalysts[J]. Chinese Journal of Catalysis, 2013, 34(4): 684-694. |
90 | 王来军, 张明慧, 李伟, 等. NiB、NiB/MgO非晶态合金催化剂的制备、表征及其加氢性能[J]. 石油化工, 2004, 33(1): 14-19. |
Wang L J, Zhang M H, Li W, et al. Preparation, characterization and catalytic performance of NiB and NiB/MgO amorphous alloy catalysts in hydrogenation of sulfolene [J]. Petrochemical Technology, 2004, 33(1): 14-19. | |
91 | He Y G, Qiao M H, Hu H R, et al. Characterization and catalytic behavior of amorphous Ni-B/AC catalysts prepared in different impregnation sequences[J]. Applied Catalysis A: General, 2002, 228(1): 29-37. |
92 | Chen X Y, Wang S, Zhuang J H, et al. Mesoporous silica-supported NiB amorphous alloy catalysts for selective hydrogenation of 2-ethylanthraquinone[J]. Journal of Catalysis, 2004, 227(2): 419-427. |
93 | Chen X Y, Hu H R, Liu B, et al. Selective hydrogenation of 2-ethylanthraquinone over an environmentally benign Ni-B/SBA-15 catalyst prepared by a novel reductant-impregnation method[J]. Journal of Catalysis, 2003, 220(1): 254-257. |
94 | Wang W B, Wang A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites [J]. Applied Clay Science, 2016, 119: 18-30. |
95 | Guo H J, Zhang H R, Peng F, et al. Mixed alcohols synthesis from syngas over activated palygorskite supported Cu-Fe-Co based catalysts[J]. Applied Clay Science, 2015, 111: 83-89. |
96 | Guo H J, Zhang H R, Peng F, et al. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2015, 503: 51-61. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||