[1] |
EBENSPERGER A, MAXWELL P, MOSCOSO C. The lithium industry: its recent evolution and future prospects[J]. Resources Policy, 2005, 30(3): 218-231.
|
[2] |
KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69.
|
[3] |
WANGER T C. The lithium future-resources, recycling, and the environment[J]. Conservation Letters, 2011, 4(3): 202-206.
|
[4] |
余疆江, 郑绵平, 伍倩. 富锂盐湖提锂工艺研究进展[J]. 化工进展, 2013, 32(1): 13-21. YU J J, ZHENG M P, WU Q. Research progress of lithium extraction process in lithium-containing salt lake[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 13-21.
|
[5] |
KIM S, LEE J, KANG J S, et al. Lithium recovery from brine using a lambda-MnO2/activated carbon hybrid supercapacitor system[J]. Chemosphere, 2015, 125: 50-56.
|
[6] |
高峰, 郑绵平, 乜贞, 等. 盐湖卤水锂资源及其开发进展[J]. 地球学报, 2011, 32(04): 483-492. GAO F, ZHENG M P, NIE Z, et al. Brine lithium resource in the salt lake and advances in its exploitation[J]. Acta Geoscientica Sinica, 2011, 32(04): 483-492.
|
[7] |
崔小琴, 程芳琴, 张爱华, 等. 盐湖卤水镁锂沉淀分离工艺研究[J]. 无机盐工业, 2012, 33(07): 33-35. CUI X Q, CHEN F Q, ZHANG A H, et al. Study on precipitation separating technique for magnesium and lithium from salt lake brine[J]. Inorganic Chemicals Industry, 2012, 33(07): 33-35.
|
[8] |
何力, 陈儒庆, 徐运海, 等. 用吸附法从察尔汗盐湖卤水中提取锂[J]. 湿法冶金, 2003, 22(03): 118-128. HE L, CHEN R Q, XU Y H, et al. Extraction of lithium from Chaerhan saltlake brine by adsorption[J]. Hydrometallurgy of China, 2003, 22(03): 118-128.
|
[9] |
CHITRAKAR R, KANOH H, MIYAI Y, et al. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties[J]. Chemistry of Materials, 2000, 12(10): 3151-3157.
|
[10] |
WANG L, MA W, HAN M, et al. Soft chemical synthesis and adsorption properties of MnO2·0.5H2O, a high performance ion sieve for lithium[J]. Acta Chimica Sinica, 2007, 65(12): 1135-1139.
|
[11] |
SHI X C, ZHOU D F, ZHANG Z B, et al. Synthesis and properties of Li1.6Mn1.6O4 and its adsorption application[J]. Hydrometallurgy, 2011, 110(1-4): 99-106.
|
[12] |
LIU X L, YANG L X, WU S X, et al. Spinel LiMn2O4 crystal structure and lithium ion-sieve property of H+/Li+ exchange[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(8): 1673-1679.
|
[13] |
SUN S Y, ZHANG Q H, YU J G. Preparation and lithium adsorption properties of low-dimensional cubic Li4Mn5O12 nanostructure[J]. Journal of Inorganic Materials, 2010, 25(6): 626-630.
|
[14] |
ZANDEVAKILI S, RANJBAR M, EHTESHAMZADEH M. Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve[J]. Hydrometallurgy, 2014, 149: 148-152.
|
[15] |
李超, 肖伽励, 孙淑英, 等. 球形离子筛吸附剂的制备及其锂吸附性能评价[J]. 化工学报, 2014, 65(1): 220-226. LI C, XIAO J L, SUN S Y, et al. Preparation and lithium adsorption evaluation for spherical ion-sieve granulated by agarose[J]. CIESC Journal, 2014, 65(1): 220-226.
|
[16] |
ZHU G, WANG P, QI P, et al. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chemical Engineering Journal, 2014, 235: 340-348.
|
[17] |
HONG H J, PARK I S, RYU T, et al. Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2013, 234: 16-22.
|
[18] |
解利昕, 陈小棉. Li1.6Mn1.6O4/PVDF多孔膜的制备及提锂性能[J]. 化工学报, 2014, 65(1): 237-243. XIE L X, CHEN X M. Preparation of Li1.6Mn1.6O4/PVDF membrane and its lithium uptaking[J]. CIESC Journal, 2014, 65(1): 237-243.
|
[19] |
HONG H J, PARK I S, RYU J, et al. Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2015, 271: 71-78.
|
[20] |
ZHANG H Q, ZHONG Z X, XING W H. Application of ceramic membranes in the treatment of oilfield-produced water: effects of polyacrylamide and inorganic salts[J]. Desalination, 2013, 309: 84-90.
|
[21] |
WINFIELD J, GAJDA I, GREENMAN J, et al. A review into the use of ceramics in microbial fuel cells[J]. Bioresource Technology, 2016, 215: 296-303.
|
[22] |
DUL'NEVA T Y, TITORUK G N, KUCHERUK D D, et al. Purification of wastewaters of direct dyes by ultra- and nanofiltration ceramic membranes[J]. Journal of Water Chemistry and Technology, 2013, 35(4): 165-169.
|
[23] |
漆虹, 曹义鸣. 2014年我国陶瓷膜应用新进展[J]. 膜科学与技术, 2015, 35(03): 131-133. QI H, CAO Y M. Advancement in the application of ceramic membrane in China 2014[J]. Membrane Science and Technology, 2015, 35(03): 131-133.
|
[24] |
MEI H W, XU H, ZHANG H K, et al. Application of airlift ceramic ultrafiltration membrane ozonation reactor in the degradation of humic acids[J]. Desalination and Water Treatment, 2015, 56(2): 285-294.
|
[25] |
ZHONG Z X, XING W H, LIU X, et al. Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts[J]. Journal of Membrane Science, 2007, 301(1-2): 67-75.
|
[26] |
ZHONG Z X, LI D Y, LIU X, et al. The fouling mechanism of ceramic membranes used for recovering TS-1 catalysts[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 53-57.
|
[27] |
XIE J, HUANG X, ZHU Z, et al. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles[J]. Ceramics International, 2011, 37(1): 419-421.
|
[28] |
ZHANG L, ZHOU D, HE G, et al. Synthesis of H2TiO3-lithium adsorbent loaded on ceramic foams[J]. Materials Letters, 2015, 145: 351-354.
|
[29] |
石西昌, 唐天罡, 尹世豪, 等. MnO2·0.5H2O锂离子筛吸附剂制备条件对其性能的影响[J]. 湿法冶金, 2014, 33(06): 487-492. SHI X C, TANG T G, YIN S H, et al. Effect of synthesis conditions on properties of MnO2·0.5H2O lithium ion-sieve adsorbents[J]. Hrdrometallurgy of China, 2014, 33(06): 487-492.
|
[30] |
SUN S Y, XIAO J L, WANG J, et al. Synthesis and Adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15517-15521.
|