[1] |
KANG H S, LEE D H, KIM K T, et al. Methane to acetylene conversion by employing cost-effective low-temperature arc[J]. Fuel Processing Technology, 2016, 148:209-216.
|
[2] |
FRIDMAN A. Plasma Chemistry[M]. Cambridge:Cambridge University Press, 2008:260-262.
|
[3] |
KWAK H S, HAND S U, HONG Y C, et al. Disintegration of carbon dioxide molecules in a microwave plasma torch[J]. Scientific Reports, 2015, 5:18436.
|
[4] |
HONG C K, NA Y H, UHM H S, et al. Effects of mass flow rate on the thermal-flow characteristics of microwave CO2 plasma[J]. Journal of Nanoscience & Nanotechnology, 2015, 15(3):2338-2341.
|
[5] |
YUM S H, KIM G J, PARK D W, et al. Decomposition and conversion of carbon dioxide into synthesis gas using thermal plasma[J]. 1997, 3(4):293-297.
|
[6] |
KOBAYASHI A, OSAKI K, YAMABE C, et al. Treatment of CO2 gas by high-energy type plasma[J]. Vacuum, 2002, 65(3):475-479.
|
[7] |
TAO X M, BAI M G, WU Q Y, et al. CO2 reforming of CH4 by binode thermal plasma[J]. International Journal of Hydrogen Energy, 2009, 34(23):9373-9378.
|
[8] |
HUCKO A, SZYMANSKI A. Thermal decomposition of carbon dioxide in an argon plasma jet[J]. Plasma Chemistry & Plasma Processing, 1984, 4(1):59-72.
|
[9] |
罗义文, 漆继红, 印永祥, 等. 等离子体裂解天然气制乙炔的技术和经济分析[J]. 天然气化工·C1化学与化工, 2002, 27(3):37-42. LUO Y W, QI J H, YIN Y X, et al. Analysis of technology and economy for acetylene production by pyrolysis of natural gas in plasma[J]. Natural Gas Chemical Industry, 2002, 27(3):37-42.
|
[10] |
陶旭梅, 代伟, 陈琦, 等. 等离子体射流裂解天然气制乙炔的实验[J]. 天然气工业, 2006, 26(4):131-134. TAO X M, DAI W, CHEN Q, et al. Laboratory test for conversion of natural gas to acetylene by plasma jet[J]. Natural Gas Industry, 2006, 26(4):131-134.
|
[11] |
余徽, 印永祥, 戴晓雁, 等. 等离子体射流裂解甲烷制乙炔的数值模拟[J]. 化工学报, 2006, 57(10):2319-2326. YU H, YIN Y X, DAI X Y, et al. Numerical simulation of methane conversion to acetylene in plasma jet reactor[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(10):2319-2326.
|
[12] |
LEDE J, LAPICQUE F, VILLERMAUX J, et al. Production of hydrogen by direct thermal decomposition of water[J]. International Journal of Hydrogen Energy, 1983, 8(9):675-679.
|
[13] |
BOCKRIS J O, DANDAPANI B, COCK D, et al. On the splitting of water[J]. International Journal of Hydrogen Energy, 1985, 10(3):179-201.
|
[14] |
SUNDSTROM D W, DEMICHIELL R L. Quenching processes for high temperature chemical reactions[J]. Industrial & Engineering Chemistry Process Design & Development, 1971, 10(1):114-122.
|
[15] |
KHAN S A, ASHFAQ S. Experimental studies on low speed converging nozzle flow with sudden expansion[J]. International Journal of Emerging Technology and Advanced Engineering, 2014, 4(1):532-540.
|
[16] |
刘杨, 边江, 郭晓明, 等. Laval喷管内激波位置的计算及制冷性能分析[J]. 低温与超导, 2016, 44(6):14-17. LIU Y, BIAN J, GUO X M, et al. Calculation of shock-wave position and analysis of refrigeration performance in Laval nozzle[J]. Cryogenics, 2016, 44(6):14-17.
|
[17] |
高全杰, 汤红军, 汪朝晖, 等. 基于Fluent的超音速喷嘴的数值模拟及结构优化[J]. 制造业自动化, 2015, 37(2):88-90. GAO Q J, TANG H J, WANG Z H, et al. Numerical simulation and structure optimization of supersonic nozzle based on Fluent[J]. Manufacturing Automation, 2015, 37(2):88-90.
|
[18] |
周章根, 马德毅. 基于Fluent的高压喷嘴射流的数值模拟[J]. 机械制造与自动化, 2010, 39(1):61-62. ZHOU Z G, MA D Y. Numerical simulation of high-pressure jet nozzle based on Fluent[J]. Machine Building & Automation, 2010, 39(1):61-62.
|
[19] |
BAYAZITOGLU Y, BROTZEN F R, ZHANG Y. Metal vapor condensation in a converging nozzle[J]. Nanostructured Materials, 1996, 7(7):789-803.
|
[20] |
LI Z D, ZHANG G Q, LI Z, et al. Simulation of gas flow field in Laval nozzle and straight nozzle for powder metallurgy and spray forming[J]. Metallurgy and Metal Working, 2008, 15(6):44-47.
|
[21] |
KUAN B T, WITT P J. Modelling supersonic quenching of magnesium vapour in a Laval nozzle[J]. Chemical Engineering Science, 2013, 87(2):23-39.
|
[22] |
DHARAVATH M, SINHA P K, CHAKRABORTY D, et al. Simulation of supersonic base flow:effect of computational grid and turbulence model[J]. Proteins-structure Function & Bioinformatics, 2009, 74(2):390-399.
|
[23] |
潘锦珊, 单鹏. 气体动力学基础[M]. 北京:国防工业出版社, 2012:620-622. PAN J S, SHAN P. Fundamentals of Gasdynamics[M]. Beijing:National Defense Industry Press, 2012:620-622.
|
[24] |
NIU K, TAKAYUKI A. Analysis for high compressible supersonic flow in a converging nozzle[J]. Fluid Dynamics Research, 1988, 4(3):195-203.
|
[25] |
曹义华, 陆家鹏. 管道轴对称旋转流的数值模拟[J]. 弹道学报, 1992, (3):14-18. CAO Y H, LU J P. The numerical simulation of axisymmetric swirling flow in a round pipe[J]. Journal of Ballistics, 1992, (3):14-18.
|
[26] |
王平, 刘学山, 乔立民. 轴对称拉瓦尔喷管流场分析[J]. 飞机设计, 2013, 33(2):23-26. WANG P, LIU X S, QIAO L M. Axisymmetric Laval nozzle flow field analysis[J]. Aircraft Design, 2013, 33(2):23-26.
|
[27] |
陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001:566-570. TAO W Q. Numerical Heat Transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001:566-570.
|
[28] |
周宇, 钱炜祺, 邓有奇, 等. k-ω SST两方程湍流模型中参数影响的初步分析[J]. 空气动力学学报, 2010, 28(2):213-217. ZHOU Y, QIAN W Q, DENG Y Q, et al. Introductory analysis of the influence of Menter's k-ω SST turbulence model's parameters[J]. Acta Aerodynamica Sinica, 2010, 28(2):213-217.
|
[29] |
MENTER F R. Zonal two-equation k-ω turbulence models for aerodynamic flows[R]. NASA, 1992.
|
[30] |
柴诚敬. 化工原理[M]. 北京:高等教育出版社, 2005:246-248. CHAI C J. Principle of Chemical Engineering[M]. Beijing:Higher Education Press, 2005:246-248.
|