CIESC Journal ›› 2017, Vol. 68 ›› Issue (6): 2219-2232.DOI: 10.11949/j.issn.0438-1157.20161805
Previous Articles Next Articles
YANG Yuesuo1,2, CHEN Yu1, LI Panpan1, WU Yuhui1, ZHAO Chuanqi2
Received:
2016-12-26
Revised:
2017-02-26
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20161805
Supported by:
supported by the National Natural Science Foundation of China (41272255, 41472237) and the Shenyang Sci. & Tech. Plan Project(F14-133-9-00)
杨悦锁1,2, 陈煜1, 李盼盼1, 武宇辉1, 赵传起2
通讯作者:
杨悦锁
基金资助:
国家自然科学基金项目(41272255,41472237);辽宁省创新团队项目(LT201502);沈阳市科技计划项目(F14-133-9-00)
CLC Number:
YANG Yuesuo, CHEN Yu, LI Panpan, WU Yuhui, ZHAO Chuanqi. Research progress on co-contamination and remediation of heavy metals and polycyclic aromatic hydrocarbons in soil and groundwater[J]. CIESC Journal, 2017, 68(6): 2219-2232.
杨悦锁, 陈煜, 李盼盼, 武宇辉, 赵传起. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J]. 化工学报, 2017, 68(6): 2219-2232.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161805
[1] | 沈国清, 陆贻通, 周培. 土壤环境中重金属和多环芳烃复合污染研究进展[J]. 上海交通大学学报(农业科学版), 2005, 23(1): 102-106. |
SHEN G Q, LU Y T, ZHOU P. Advances of research on combined pollution of heavy metals with polycyclic aromatic hydrocarbons (PAHs) in soil environment[J]. J. Shanghai Jiaotong University(Agricultural Science), 2005, 23(1): 102-106. | |
[2] | GAUTHIER P T, NORWOOD W P, PREPAS E E, et al. Metal-PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes[J]. Aquatic Toxicology, 2014, 154(5): 253-269. |
[3] | CHEN F, TAN M, MA J, et al. Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study[J]. Journal of Hazardous Materials, 2015, 302: 250-261. |
[4] | SONG Y F, WILKE B M, SONG X Y, et al. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere, 2006, 65(10): 1859-1868. |
[5] | LIU S H, ZENG G M, NIUQ Y, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review[J]. Bioresource Technology, 2016, 224 (2017): 25-33. |
[6] | LU M, ZHANG Z Z, WANG J X, et al. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea)[J]. Environ. Sci. Technol., 2014, 48(2): 1158-1165. |
[7] | MMAMI M T, PORTET-KOLTALO F, BENAMAR A, et al. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments[J]. Chemosphere, 2015, 125: 1-8. |
[8] | GNELLO A C, BAGARD M, HULLEBUSCH E D V, et al. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment, 2016, 563/564: 693-703. |
[9] | IJAYARAGHAVAN K, BALASUBRAMANIAN R. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions[J]. Journal of Environmental Management, 2015, 160: 283-296. |
[10] | ANG Y, LI T Q, WU C X, et al. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils[J]. Journal of Hazardous Materials, 2015, 299: 540-549. |
[11] | CHOWDHURY S, MAZUMDER M A, AL-ATTAE O, et al. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries[J]. Science of the Total Environment, 2016, 569/570: 476-488. |
[12] | DEMIRAK A, YILMAZ F, TUNA A L, et al. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey[J]. Chemosphere, 2006, 63(9): 1451-1458. |
[13] | CHEN T, CHANG Q R, LIU J, et al. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in northwest China[J]. Science of the Total Environment, 2016, 565: 155-164. |
[14] | TURNER A. Heavy metals, metalloids and other hazardous elements in marine plastic litter[J]. Mar. Pollut. Bull., 2016, 111(1/2): 136-142. |
[15] | MANOLI E, SAMARA C. Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis[J]. TrAC Trends in Analytical Chemistry, 1999, 18(6): 417-428. |
[16] | ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016, 25(1): 107-123. |
[17] | BANDEIRA G C, MENESES H E. Handbook of Polycyclic Aromatic Hydrocarbons: Chemistry, Occurrence and Health Issues[M]. New York: Nova Science Publishers, 2013. |
[18] | MUSA BANDOWE B A, SRINIVASAN P, SEELGE M, et al. A 2600-year record of past polycyclic aromatic hydrocarbons (PAHs) deposition at Holzmaar (Eifel, Germany)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 401(5): 111-121. |
[19] | PENG N N, LI Y, LIU Z G, et al. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion[J]. Science of the Total Environment, 2016, 565: 1201-1207. |
[20] | ZHANG Y J, LIN Y, CAI J, et al. Atmospheric PAHs in North China: spatial distribution and sources[J]. Science of the Total Environment, 2016, 565: 994-1000. |
[21] | BROWN J N, PEAKE B M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff[J]. Science of the Total Environment, 2006, 359(1/2/3): 145-155. |
[22] | 2015年中国海洋环境状况公报[R]. 北京: 中国海洋局, 2016. |
Bulletin of China's marine environmental status of China for the year of 2015[R]. Beijing: State Oceanic Administration, People's Republic of China, 2016. | |
[23] | DONAHUE W F, ALLEN E W, SCHINDLER D W. Impacts of coal-fired power plants on trace metals and polycyclic aromatic hydrocarbons (PAHs) in lake sediments in Central Alberta, Canada[J]. Journal of Paleolimnology, 2006, 35(1): 111-128. |
[24] | WU Q H, LEUNG J Y S, GENG X H, et al. Heavy metal contamination of soil and water in the vicinity of an abandoned E-waste recycling site: implications for dissemination of heavy metals[J]. Science of the Total Environment, 2015, 506/507: 217-225. |
[25] | WONG M H, WU S C, DENG W J, et al. Export of toxic chemicals-a review of the case of uncontrolled electronic-waste recycling[J]. Environmental Pollution, 2007, 149(2): 131-140. |
[26] | SPROVIERI M, FEO M L, PREVEDELLO L, et al. Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy)[J]. Chemosphere, 2007, 67(5): 998-1009. |
[27] | 邓军. 氧化节杆菌对水体中苯并[a]芘-镉复合污染的生物修复及机理研究[D]. 广州: 暨南大学, 2010. |
DENG J. Study of bioremediation and mechanism of the combined pollution of B[a]P-Cd in water body by arthrobacter oxydans[D]. Guangzhou: Ji'nan University, 2010. | |
[28] | 朱岗辉, 孙璐, 廖晓勇, 等. 郴州工业场地重金属和PAHs复合污染特征及风险评价[J]. 地理研究, 2012, 31(5): 831-839. |
ZHU G H, SUN L, LIAO X Y, et al. Characteristics and risk assessment PAHs and heavy metals co-contamination in industrial field in Chenzhou, China[J]. Geographical Research, 2012, 31(5): 831-839. | |
[29] | 赵颖, 刘利军, 党晋华, 等. 不同植物与玉米间作对玉米吸收多环芳烃和重金属的影响[J]. 环境工程, 2014, 32(7): 138-141. |
ZHAO Y, LIU L J, DANG J H, et al. Effects of intercropping different crops with maize on its uptake of the PAHs and heavy metal[J]. Environmental Engineering, 2014, 32(7): 138-141. | |
[30] | SCHEIBYE K, WEISSER J, BORGGAARD O K, et al. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua[J]. Chemosphere, 2013, 95(1): 556-565. |
[31] | 袁文淼. 陕北能源化工基地土壤中重金属与多环芳烃污染现状及其污染风险分析[D]. 西安: 西安建筑科技大学, 2015. |
YUAN W M. Study on pollution status and risk of heavy metals and PAHs in soil of Northern Shaanxi Energy Chemical Industry Base[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. | |
[32] | STAJIC J M, MILENKOVIC B, PUCAREVIC M, et al. Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac city, Central Serbia[J]. Chemosphere, 2015, 146: 68-74. |
[33] | SARMA H, ISLAM N F, BORGOHAIN P, et al. Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, north-east India: implications for the bio-economy[J]. Emerging Contaminants, 2016, 2(3): 119-127. |
[34] | BLISS C I. The toxicity of poisons applied jointly[J]. Ann. Appl. Biol., 1939, 26: 585-615. |
[35] | DEARY M E, EKUMANKAMA C C, CUMMINGS S. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants[J]. Journal of Hazardous Materials, 2016, 307: 240-252. |
[36] | 中国耕地地球化学调查报告(2015年)[R]. 北京: 中国地质调查局, 2015. |
Geochemical survey of China's arable land (2015)[R]. Beijing: China Geological Survey, 2015. | |
[37] | SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environ. Sci. Technol., 2013, 47(12): 6415-6424. |
[38] | QIAN X, LIANG B C, FU W J, et al. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China: spatial distribution, composition, sources and ecological risk assessment[J]. Mar. Pollut. Bull., 2016, 112(1/2): 349-358. |
[39] | YU H, YU J Z. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: size distribution characteristics and size-resolved gas-particle partitioning[J]. Atmospheric Environment, 2012, 54(5): 194-200. |
[40] | LU M, XU K, CHEN J. Effect of pyrene and cadmium on microbial activity and community structure in soil[J]. Chemosphere, 2013, 91(4): 491-7. |
[41] | THAVAMANI P, MALIK S, BEER M, et al. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals.[J]. Journal of Environmental Management, 2012, 99(5): 10. |
[42] | LI Q S, LU Y L, SHI Y J, et al. Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings[J]. Journal of Environmental Sciences, 2013, 25(9): 1936-1946. |
[43] | SANTOS E D C D, SILVA I S, SIMOES T H N, et al. Correlation of soil microbial community responses to contamination with crude oil with and without chromium and copper[J]. International Biodeterioration & Biodegradation, 2012, 70(5): 104-110. |
[44] | GONG X, CHEN X. Effect of PAHs and heavy metals-combined pollution on soil enzyme activity[C]// Conference on Environmental Pollution and Public Health. Wuhan, China, 2011. |
[45] | KHILLARE P S, JYETHI D S, SARKAR S. Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants[J]. Food and Chemical Toxicology, 2012, 50(5): 1642-1652. |
[46] | GUO Y, WU K, HUO X, et al. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons[J]. Journal of Environmental Health, 2011, 73(9): 22. |
[47] | TOYOOKA T, IBUKI Y. DNA damage induced by coexposure to PAHs and light[J]. Environ. Toxicol. Pharmacol., 2007, 23(2): 256-63. |
[48] | VANGRONSVELD J, CLIJSTERS H. Toxic effects of metals[M]// Farago M E. Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity. Hoboken: Wiley, 2008: 149-177. |
[49] | WANG T, FENG W, KUANG D, et al. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers[J]. Environmental Research, 2015, 140: 405-413. |
[50] | 孙大志. 地下环境中多环芳烃(菲)水文地球化学行为及归趋模拟研究[D]. 长春: 吉林大学, 2008. |
SUN D Z. Study on the hydrogeochemistry behavior and transforming simulation of polycyclic aromatic hydrocarbons (PAHs) in subsurface environment[D]. Changchun: Jilin University, 2008. | |
[51] | BROWN J N, PEAKE B M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff[J]. Science of the Total Environment, 2006, 359(1/2/3): 145-155. |
[52] | LIGARAY M, BAEK S S, KWON H O, et al. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials, 2016, 320: 442-457. |
[53] | 李政, 顾贵洲, 赵朝成, 等. 高相对分子质量多环芳烃的生物共代谢降解[J]. 石油学报(石油加工), 2015, 31(3): 720-725. |
LI Z, GU G Z, ZHAO C C, et al. Co-metabolism biodegradation of polycyclic aromatic hydrocarbons with high relative molecular mass[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(3): 720-725. | |
[54] | HARITASH A K, KAUSHIK C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1-15. |
[55] | LEJA K, LEWANDOWICZ G. Polymer biodegradation and biodegradable polymers—a review[J]. Polish Journal of Environmental Studies, 2010, 19(2): 255-266. |
[56] | ARUN A, EYINI M. Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi[J]. Bioresource Technology, 2011, 102(17): 8063-8070. |
[57] | POKROVSKY O S, MARTINEZ R E, KOMPANTSEVA E I, et al. Interaction of metals and protons with anoxygenic phototrophic bacteria Rhodobacter blasticus[J]. Chemical Geology, 2013, 335(1): 75-86. |
[58] | VANBROEKHOVEN K, VAN ROY S, GIELEN C, et al. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone[J]. Environmental Pollution, 2007, 148(3): 759-769. |
[59] | SHEN G Q, LU Y T, ZHOU Q X, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere, 2005, 61(8): 1175-1182. |
[60] | KE L, LUO L J, WANG P, et al. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum[J]. Bioresour. Technol., 2010, 101(18): 6950-6961. |
[61] | CHEN S N, YIN H, YE J S, et al. Effect of copper(Ⅱ) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia[J]. Chemosphere, 2013, 90(6): 1811-1820. |
[62] | CHIGBO C, BATTY L, BARTLETT R. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil[J]. Chemosphere, 2013, 90(10): 2542-2548. |
[63] | TAO Y Q, XUE B, YANG Z, et al. Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa[J]. Chemosphere, 2015, 119: 719-726. |
[64] | BISWAS B, SARKAR B, MANDAL A, et al. Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination[J]. Water Research, 2016, 104: 119-127. |
[65] | DOUGHERTY D A. The cation-pi interaction[J]. Acc. Chem. Res., 2013, 46(4): 885-893. |
[66] | YORITA H, OTOMO K, HIRAMATSU H, et al. Evidence for the cation-pi interaction between Cu2+ and tryptophan[J]. Journal of the American Chemical Society, 2008, 130(46): 15266-15267. |
[67] | TAO Y Q, LI W, XUE B, et al. Different effects of copper (Ⅱ), cadmium (Ⅱ) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria[J]. Journal of Hazardous Materials, 2013, 261(5/6): 21. |
[68] | ZHANG X K, WANG H L, HE L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environ. Sci. Pollut. Res. Int., 2013, 20(12): 8472-8483. |
[69] | YE J S, YIN H, XIE D P, et al. Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a]pyrene[J]. Chemical Engineering Journal, 2013, 219(3): 1-9. |
[70] | SHEN H, PRITCHARD P H, SEWELL G W. Microbial reduction of Cr(Ⅵ) during anaerobic degradation of benzoate[J]. Environ. Sci. Technol., 1996, 30(5): 1667-1674. |
[71] | NAVARRO A, CAÑADAS I, MARTINEZ D, et al. Application of solar thermal desorption to remediation of mercury-contaminated soils[J]. Solar Energy, 2009, 83(8): 1405-1414. |
[72] | NEGRETE J L M, BARBOZA E L. Electrokinetic remediation of mercury-contaminated soil, from the mine El Alacran-San Jorge river basin, Cordoba-Colombia[J]. Revista Facultad De Ingenieria Universidad De Antioquia, 2013, 64(68): 136-146. |
[73] | USMAN M, HANNA K, HADERLEIN S. Fenton oxidation to remediate PAHs in contaminated soils: a critical review of major limitations and counter-strategies[J]. Science of the Total Environment, 2016, 569/570: 179-190. |
[74] | YANG C J, ZENG Q R, WANG Y Z, et al. Simultaneous elution of polycyclic aromatic hydrocarbons and heavy metals from contaminated soil by two amino acids derived from β-cyclodextrins[J]. Journal of Environmental Sciences, 2010, 22(12): 1910-1915. |
[75] | 金一凡, 周连杰, 杰克, 等. 污染土壤修复技术的探讨[J]. 环境科技, 2012, 25(5): 68-72. |
JIN Y F, ZHOU L J, BAMODU O, et al. An analysis of several remediation technologies of the contaminated soils[J]. Environmental Science and Technology, 2012, 25(5): 68-72. | |
[76] | 彭立君, 杨涛, 刘云国, 等. 淋洗修复重金属和多环芳烃复合污染土壤的研究进展[J]. 化工环保, 2008, 28(5): 418-423. |
PENG L J, YANG T, LIU Y G, et al. Chemical leaching remediation of soil contaminated by heavy metals and PAHs[J]. Environmental Protection of Chemical Industry, 2008, 28(5): 418-423. | |
[77] | MAO X H, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils: a review[J]. Journal of Hazardous Materials, 2014, 285: 419. |
[78] | 宋赛赛. 皂角苷对重金属-PAHs复合污染土壤的强化修复作用及机理[D]. 杭州: 浙江大学, 2014. |
SONG S S. The role and mechanism for saponin to remediate co-contaminated soils with heavy metals and PAHs[D]. Hangzhou: Zhejiang University, 2014. | |
[79] | KHODADOUST A P, REDDY K R, MATURI K. Effect of different extraction agents on metal and organic contaminant removal from a field soil[J]. Journal of Hazardous Materials, 2005, 117(1): 15-24. |
[80] | 钟金魁, 赵保卫, 朱琨, 等. 化学强化洗脱修复铜、菲及其复合污染黄土[J]. 环境科学, 2011, 32(10): 3106-3112. |
ZHONG J K, ZHAO B W, ZHU K, et al. Remediation of Cu/phenanthrene and combined contaminated loess soil by chemical-enhanced washing[J]. Environmental Science, 2011, 32(10): 3106-3112. | |
[81] | 张杰西. 表面活性剂-螯合剂对多环芳烃/重金属复合污染土壤的柱淋洗研究[D]. 兰州: 兰州交通大学, 2014. |
ZHANG J X. Column leaching of PAHs/heavy metal in soil by surfactant and chelating agent[D]. Lanzhou: Lanzhou Jiaotong University, 2014. | |
[82] | 高彦波, 蔡飞, 谭德远, 等. 土壤重金属污染及修复研究简述[J]. 安徽农业科学, 2015, (16): 93-95. |
GAO Y B, CAI F, TAN D Y, et al. Discussion of soil heavy metal pollution and remediation[J]. Journal of Anhui Agri. Sci., 2015, (16): 93-95. | |
[83] | 段燕青, 岳秀萍, 白凡玉, 等. 耐受重金属的芘降解真菌的筛选及芘降解动力学研究[J]. 环境工程学报, 2015, 9(2): 977-982. |
DUAN Y Q, YUE X P, BAI F Y, et al. Screening and degradation kinetics of heavy metal tolerance and pyrene-degrading fungi[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 977-982. | |
[84] | 袁林江. 环境工程微生物学[M]. 北京: 化学工业出版社, 2012. |
YUAN L J. Microbiology of Environmental Engineering[M]. Beijing: Chemical Industry Press, 2012. | |
[85] | MIRSAL I A. Soil Pollution: Origin, Monitoring & Remediation[M]. Berlin: Springer, 2008. |
[86] | 陈烁娜, 尹华, 叶锦韶, 等. 嗜麦芽窄食单胞菌处理苯并[a]芘-铜复合污染过程中细胞表面特性的变化[J]. 化工学报, 2012, 63(5): 1592-1598. |
CHEN S N, YIN H, YE J S, et al. Change of cell surface features of stenotrophomonas maltophiliain treating benzo[a]pyrene-copper combined pollution[J]. CIESC Journal, 2012, 63(5): 1592-1598. | |
[87] | JIANG J, LIU H Y, LI Q, et al. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae[J]. Ecotoxicology & Environmental Safety, 2015, 120: 386-393. |
[88] | SUN T R, CANG L, WANG Q Y, et al. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil[J]. J. Hazard. Mater., 2010, 176(1/2/3): 919-925. |
[89] | YI H, CROWLEY D E. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid[J]. Environ. Sci. Technol., 2007, 41(12): 4382-8. |
[90] | 李廷强, 董增施, 姜宏, 等. 东南景天对镉-苯并[a]芘复合污染土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 465-472. |
LI T Q, DONG Z S, JIANG H, et al. Remediation efficiency of Cd-B[a]P combined polluted soil by Sedum alfredii[J]. Journal of Zhejiang University (Agric. & Life Sci.), 2011, 37(4): 465-472. | |
[91] | FENG T, LIN H, GUO Q, et al. Influence of an arsenate-reducing and polycyclic aromatic hydrocarbons-degrading Pseudomonas, isolate on growth and arsenic accumulation in Pteris vittata, L. and removal of phenanthrene[J]. International Biodeterioration & Biodegradation, 2014, 94(94): 12-18. |
[92] | WANG K, HUANG H G, ZHU Z Q, et al. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis)[J]. Int. J. Phytoremediation, 2013, 15(3): 283-98. |
[93] | United States Environmental Protection Agency. A citizen's guide to phytoremediation, Office of solid waste and emergency response, Technology Innovations office[EB]. Technology Fact Sheet (5102G) EPA, 2006. |
[94] | SINGER A C, BELL T, HEYWOOD C A, et al. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel[J]. Environ. Pollut., 2007, 147(1): 74-82. |
[95] | YANG C J, ZHOU Q X, WEI S H, et al. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L[J]. Int. J. Phytoremediation, 2011, 13(8): 818-833. |
[96] | BANESHI M M, REZAEI KALANTARY R, JONIDI JAFARI A, et al. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa[J]. J. Environ. Health Sci. Eng., 2014, 12(1): 173-183.ographical Research, 2012, 31(5):831-839. |
[29] | 赵颖, 刘利军, 党晋华, 等. 不同植物与玉米间作对玉米吸收多环芳烃和重金属的影响[J]. 环境工程, 2014, 32(7):138-141. ZHAO Y, LIU L J, DANG J H, et al. Effects of intercropping different crops with maize on its uptake of the PAHs and heavy metal[J]. Environmental Engineering, 2014, 32(7):138-141. |
[30] | SCHEIBYE K, WEISSER J, BORGGAARD O K, et al. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua[J]. Chemosphere, 2013, 95(1):556-565. |
[31] | 袁文淼. 陕北能源化工基地土壤中重金属与多环芳烃污染现状及其污染风险分析[D]. 2015,西安建筑科技大学. YUAN W M. Study on pollution status and risk of heavy metals and PAHs in soil of Northern Shanxi Energy Chemical Industry Base[D]. 2015, Xi an Univ.of Arch.& Tech. |
[32] | STAJIC J M, MILENKOVIC B, PUCAREVIC M, et al. Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac city, Central Serbia[J]. Chemosphere, 2015, 146:68-74. |
[33] | SARMA H, ISLAM N F, BORGOHAIN P, et al. Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, north-east India:Implications for the bio-economy[J]. Emerging Contaminants, 2016, 2(3): 119-127. |
[34] | LYNCH N R, HOANG T C, O'BRIEN T E. Acute toxicity of binary-metal mixtures of copper, zinc, and nickel to Pimephales promelas:Evidence of more-than-additive effect.[J]. Environmental Toxicology & Chemistry, 2015, 35(2):446-457. |
[35] | DEARY M E, EKUMANKAMA C C,CUMMINGS S. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants[J]. Journal of Hazardous Materials, 2016, 307:240-252. |
[36] | 中国地质调查局. 中国耕地地球化学调查报告(2015年)[R]. 2015. SURVEY C G. Geochemical survey of China's arable land[R] (2015). 2015. |
[37] | SHEN H Z, HUANG Y, WANG R, et al. Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions[J]. Environ Sci Technol, 2013, 47(12):6415-6424. |
[38] | QIAN X, LIANG B C, FU W J, et al. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China:Spatial distribution, composition, sources and ecological risk assessment[J]. Mar Pollut Bull, 2016, 112(1-2):349-358. |
[39] | YU H,YU J Z. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China:Size distribution characteristics and size-resolved gas-particle partitioning[J]. Atmospheric Environment, 2012, 54(5):194-200. |
[40] | LU M, XU K,CHEN J. Effect of pyrene and cadmium on microbial activity and community structure in soil[J]. Chemosphere, 2013, 91(4):491-7. |
[41] | THAVAMANI P, MALIK S, BEER M, et al. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals.[J]. Journal of Environmental Management, 2012, 99(5):10. |
[42] | QIU S, YONG L, YA J, et al. Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings[J]. Journal of Environmental Sciences, 2013, 25(9):1936-1946. |
[43] | SANTOS E D C D, SILVA I S, SIMOES T H N, et al. Correlation of soil microbial community responses to contamination with crude oil with and without chromium and copper[J]. International Biodeterioration & Biodegradation, 2012, 70(5):104-110. |
[44] | GONG X, CHEN X. Effect of PAHs and Heavy Metals-Combined Pollution on Soil Enzyme Activity. in Conferenceon Environmental Pollution and Public Health[C]. 2011, Wu Han China. |
[45] | KHILLARE P S, JYETHI D S,SARKAR S. Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants[J]. Food and Chemical Toxicology, 2012, 50(5):1642-1652. |
[46] | GUO Y, WU K, HUO X, et al. Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons.[J]. Journal of Environmental Health, 2011, 73(9):22. |
[47] | TOYOOKA T,IBUKI Y. DNA damage induced by coexposure to PAHs and light[J]. Environ Toxicol Pharmacol, 2007, 23(2):256-63. |
[48] | VANGRONSVELD J, CLIJSTERS H, VANGRONSVELD J, et al. Toxic Effects of Metals[M]. 2008, 149-177. |
[49] | WANG T, FENG W, KUANG D, et al. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers.[J]. Environmental Research, 2015, 140:405-413. |
[50] | 孙大志. 地下环境中多环芳烃(菲)水文地球化学行为及归趋模拟研究[D]. 2008.吉林大学. SUND Z. Study on the hydrogeochemistry behavior and transforming simulation of Polycyclic Aromatic Hydrocarbons(PAHs) in subsurface environment[D]. 2008, Jilin University. |
[51] | BROWN J N,PEAKE B M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff[J]. Science of The Total Environment, 2006, 359(1-3):145-155. |
[52] | LIGARAY M, BAEK S S, KWON H O, et al. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials, 2016, 320:442-457. |
[53] | 李政, 顾贵洲, 赵朝成,等. 高相对分子质量多环芳烃的生物共代谢降解[J]. 石油学报石油加工, 2015, V31(3):720-725. LI Z,SHUN G Z, ZHAO C M, et al. Co-metabolism biodegradation of polycyclic aromatic hydrocarbons with high relative molecular mass[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015(3):720-725. |
[54] | HARITASH A K,KAUSHIK C. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):a review[J]. Journal of Hazardous Materials, 2009, 169(1-3):1-15. |
[55] | LEJA K, LEWANDOWICZ G. Polymer Biodegradation and Biodegradable Polymers-a Review[J]. Polish Journal of Environmental Studies, 2010, 19(2):255-266. |
[56] | ARUN A, EYINI M. Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi.[J]. Bioresource Technology, 2011, 102(17):8063-70. |
[57] | POKROVSKY O S, MARTINEZ R E, KOMPANTSEVA E I, et al. Interaction of metals and protons with anoxygenic phototrophic bacteria Rhodobacter blasticus[J]. Chemical Geology, 2013, 335(1):75-86. |
[58] | VANBROEKHOVEN K, VAN R S, GIELEN C, et al. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone[J]. Environmental Pollution, 2007, 148(3):759-769. |
[59] | SHEN G, LU Y, Zhou Q, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme.[J]. Chemosphere, 2005, 61(8):1175-1182. |
[60] | KE L, LUO L J, WANG P, et al. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum[J]. Bioresour Technol, 2010, 101(18):6950-6961. |
[61] | CHEN S N, YIN H, YE J S, et al. Effect of copper(II) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia[J]. Chemosphere, 2013, 90(6):1811-1820. |
[62] | CHIGBO C, BATTY L,BARTLETT R. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil[J]. Chemosphere, 2013, 90(10):2542-8. |
[63] | TAO Y Q, XUE B, YANG Z, et al.Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa[J]. Chemosphere, 2015, 119(119C):719-726. |
[64] | BISWAS B, SARKAR B, MANDAL A, et al. Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination[J]. Water Research, 2016, 104:119-127. |
[65] | DOUGHERTY D A. The cation-pi interaction[J]. Acc Chem Res, 2013, 46(4):885-93. |
[66] | YORITA H, OTOMO K, HIRAMATSU H, et al. Evidence for the cation-pi interaction between Cu2+ and tryptophan[J]. Journal of the American Chemical Society, 2008, 130(46):15266-7. |
[67] | TAO Y Q, LI W, XUE B, et al.Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria[J]. Journal of Hazardous Materials, 2013, 261(5-6):21. |
[68] | ZHANG X K, WANG H L, HE L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environ Sci Pollut Res Int, 2013, 20(12):8472-83. |
[69] | YE J, YIN H, XIE D, et al. Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a]pyrene[J]. Chemical Engineering Journal, 2013, 219(3):1-9. |
[70] | SHEN H, PRITCHARD P H, SEWELL G W.Microbial Reduction of Cr(VI) during Anaerobic Degradation of Benzoate[J]. Environ Sci Technol, 1996, 30(5):1667-1674. |
[71] | NAVARRO A, CA ADAS I, MARTINEZ D, et al. Application of solar thermal desorption to remediation of mercury-contaminated soils[J]. Solar Energy, 2009, 83(8):1405-1414. |
[72] | NEGRETE J L M,BARBOZA E L. Electrokinetic remediation of mercury- contaminated soil, from the mine El Alacran-San Jorge river basin, Cordoba-Colombia[J]. Revista Facultad De Ingenieria Universidad De Antioquia, 2013, 64(68):136-146. |
[73] | USMAN M, HANNA K,HADERLEIN S. Fenton oxidation to remediate PAHs in contaminated soils:A critical review of major limitations and counter-strategies[J]. Science of the Total Environment, 2016, 569-570:179-190. |
[74] | YANG C J, ZENG Q R, WANG Y Z, et al. Simultaneous elution of polycyclic aromatic hydrocarbons and heavy metals from contaminated soil by two amino acids derived from β-cyclodextrins[J]. Journal of Environmental Sciences, 2010, 22(12):1910-1915. |
[75] | 金一凡, 周连杰, 杰克, 等. 污染土壤修复技术的探讨[J]. 环境科技, 2012, 25(5):68-72. JIN Y F, ZHOU L J, BAMODU, et al. An analysis of several remediation technologies of the contaminated soils[J]. Environmental Science and Technology, 2012, 25(5):68-72. |
[76] | 彭立君, 杨涛, 刘云国, 等. 淋洗修复重金属和多环芳烃复合污染土壤的研究进展[J]. 化工环保, 2008, 28(5):418-423. PENG L J, YANG T, LIU Y G, et al. Chemieal leaching remediation of soil contaminated by heavy metals and PAHs[J]. Environmental Protection of Chemical Industry, 2008, 28(5):418-423. |
[77] | MAO X, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils:a review.[J]. Journal of Hazardous Materials, 2014, 285:419. |
[78] | 宋赛赛. 皂角苷对重金属--PAHs复合污染土壤的强化修复作用及机理[D]. 2014.浙江大学. SONG S S. The role and mechanism for saponin to remediate co-contaminated soils with heavy metals and PAHs[D]. 2014, Zhejiang University. |
[79] | KHODADOUST A P, REDDY K R,MATURI K. Effect of different extraction agents on metal and organic contaminant removal from a field soil[J]. Journal of Hazardous Materials, 2005, 117(1):15-24. |
[80] | 钟金魁, 赵保卫, 朱琨, 等. 化学强化洗脱修复铜、菲及其复合污染黄土[J]. 环境科学, 2011, 32(10):3106-3112. ZHONG J K, ZHAO B W, ZHU K, et al. Remediation of Cu/Phenanthrene and combined contaminated loess soil by chemical一enhanced washing[J]. Environmental science, 2011, 32(10):3106-3112. |
[81] | 张杰西. 表面活性剂-螯合剂对多环芳烃/重金属复合污染土壤的柱淋洗研究[D]. 2014,兰州交通大学. ZHANG J X. Column leaching of PAHs/heavy metal in soil by surfactant and chelating agent[D]. 2014, Lanzhou Jiaotong University. |
[82] | 高彦波, 蔡飞, 谭德远,等. 土壤重金属污染及修复研究简述[J]. 安徽农业科学, 2015, 16(16):93-95. GAO Y B, CAI F, TAN D Y, et al. Discussion of soil heavy metal pollution and remediation[J]. Journal of Anhui Agri. Sci., 2015(16):93-95. |
[83] | 段燕青, 岳秀萍, 白凡玉, 等. 耐受重金属的芘降解真菌的筛选及芘降解动力学研究[J]. 环境工程学报, 2015, 9(2):977-982. DUAN Y Q, YUE X P, BAI F Y, et al. Screening and degradation kinetics of heavy metal tolerance and pyrene-degrading fungi[J]. Chinese Journal of Environmental Engineering, 2015, 9(2):977-982. |
[84] | 袁林江. 环境工程微生物学[M]. 2012:化学工业出版社. YUAN L J. Microbiology of environmental engineering[M]. 2012:Chemical Industry Press. |
[85] | MIRSAL I A. Soil pollution:origin, monitoring & remediation[M]. 2008:Springer. |
[86] | 陈烁娜, 尹华, 叶锦韶, 等. 嗜麦芽窄食单胞菌处理苯并[a]芘-铜复合污染过程中细胞表面特性的变化[J]. 化工学报, 2012, 63(5):1592-1598. CHEN S N, YIN H, YE J S, et al. Change of cell surface features of stenotrophomonas maltophiliain treating benzo[a]pyrene-copper combined pollution[J]. J Chemical Industry and Engineering, 2012, 63(5):1592-1598. |
[87] | JIANG J, LIU H Y, LI Q, et al. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae[J]. Ecotoxicology & Environmental Safety, 2015, 120:386-393. |
[88] | SUN T R, CANG L, WANG Q Y, et al. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil[J]. J Hazard Mater, 2010, 176(1-3):919-25. |
[89] | YI H,CROWLEY D E. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid[J]. Environ Sci Technol, 2007, 41(12):4382-8. |
[90] | 李廷强, 董增施, 姜宏, 等. 东南景天对镉-苯并[a]芘复合污染土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4):465-472. LI T Q., DONG Z S, JIANG H, et al. Remediation efficiency of Cd-B[a]P combined polluted soil by Sedum alfredii[J]. Journal of Zhejiang University(Agric. & Life Sci.), 2011, 37(4):465-472. |
[91] | FENG T, LIN H, GUO Q, et al. Influence of an arsenate-reducing and polycyclic aromatic hydrocarbons-degrading Pseudomonas, isolate on growth and arsenic accumulation in Pteris vittata, L. and removal of phenanthrene[J]. International Biodeterioration & Biodegradation, 2014, 94(94):12-18. |
[92] | WANG K, HUANG H G, ZHU Z Q, et al. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis)[J]. Int J Phytoremediation, 2013, 15(3):283-98. |
[93] | United States Environmental Protection Agency (2006). A citizen's guide to phytoremediation, Office of solid waste and emergency response, Technology Innovations office[EB]. Technology Fact Sheet (5102G) EPA, 2006. |
[94] | SINGER A C, BELL T, HEYWOOD C A, et al. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum:evidence of histidine as a measure of phytoextractable nickel[J]. Environ Pollut, 2007, 147(1):74-82. |
[95] | YANG C J, ZHOU Q X, WEI S H, et al. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L[J]. Int J Phytoremediation, 2011, 13(8):818-833. |
[96] | BANESHI M M, REZAEI KALANTARY R, JONIDI JAFARI A, et al. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa[J]. J Environ Health Sci Eng, 2014, 12(1):173-183. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[3] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[4] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[5] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[6] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[7] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[8] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[9] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[10] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[11] | Xianlun XU, Yang QIAN, Xingwang ZHANG, Lecheng LEI. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge [J]. CIESC Journal, 2022, 73(9): 4025-4033. |
[12] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[13] | Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet [J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[14] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[15] | Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater [J]. CIESC Journal, 2022, 73(5): 2183-2193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||