[1] |
CHIQUET P, DARIDON J L, BROSETA D, et al. CO2/Water interfacial tensions under pressure and temperature conditions of CO2 geological storage [J]. Energy Convers. Manage., 2007, 48 (3): 736-744.
|
[2] |
JR F M O. Onshore geologic storage of CO2 [J]. Science, 2009, 325 (5948): 1656-1658.
|
[3] |
LI Z, DONG M, LI S, et al. CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity [J]. Energy Convers. Manage., 2006, 47 (11/12): 1372-1382.
|
[4] |
JUNG J W, WAN J. Supercritical CO2 and ionic strength effects on wettability of silica surfaces: equilibrium contact angle measurements [J]. Energy Fuels, 2012, 26 (9): 6053-6059.
|
[5] |
AGGELOPOULOS C A, ROBIN M, VIZIKA O. Interfacial tension between CO2 and brine (NaCl+CaCl2) at elevated pressures and temperatures: the additive effect of different salts [J]. Adv. Water Resour., 2011, 34 (4): 505-511.
|
[6] |
CHALBAUD C, ROBIN M, LOMBARD J M, et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage [J]. Adv. Water Resour., 2009, 32 (1): 98-109.
|
[7] |
GEORGIADIS A, MAITLAND G, TRUSLER J P M, et al. Interfacial tension measurements of the (H2O+CO2) system at elevated pressures and temperatures [J]. J. Chem. Eng. Data, 2010, 55 (10): 4168-4175.
|
[8] |
HEBACH A, OBERHOF A, DAHMEN N, et al. Interfacial tension at elevated pressures-measurements and correlations in the water+carbon dioxide system [J]. J. Chem. Eng. Data, 2002, 47 (6): 1540-1546.
|
[9] |
ZHAO L L, LIN S C, MENDENHALL J D, et al. Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface [J]. J. Phys. Chem. B, 2011, 115 (19):6076-6087.
|
[10] |
ZHAO L L, JI J Y, TAO L, et al. Ionic effects on supercritical CO2-brine interfacial tensions: molecular dynamics simulations and a universal correlation with ionic strength, temperature, and pressure [J]. Langmuir, 2016, 32 (36): 9188-9196.
|
[11] |
DA-ROCHA S R P, JOHNSTON K P, WESTACOTT R E, et al. Molecular structure of the water-supercritical CO2 interface [J]. J. Phys. Chem. B, 2001, 105 (48): 12092-12104.
|
[12] |
MÜLLER E A, MEJíA A. Resolving discrepancies in the measurements of the interfacial tension for the CO2+H2O mixture by computer simulation [J]. J. Phys. Chem. Lett., 2014, 5 (7): 1267-1271.
|
[13] |
NIELSEN L C, BOURG I C, SPOSITO G. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage [J]. Geochim. Cosmic. Acta, 2012, 81: 28-38.
|
[14] |
范康年. 物理化学 [M]. 2版. 北京:高等教育社, 2005: 222.FAN K N. Physical Chemistry [M]. 2nd ed. Beijing: Higher Education Press, 2005: 222.
|
[15] |
AGGELOPOULOS C A, ROBIN M, PERFETTI E, et al. CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: influence of cation valence on interfacial tension [J]. Adv. Water Resour., 2010, 33 (6): 691-697.
|
[16] |
KLAUDA J B, WU X, PASTOR R W, et al. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method [J]. J. Phys. Chem. B, 2007, 111 (17): 4393-4400.
|
[17] |
DE LARA L S, MICHELON M F, MIRANDA C R. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes [J]. J. Phys. Chem. B, 2012, 116 (50): 14667-14676.
|
[18] |
PATEL S A, BROOKS C L. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials [J]. J. Chem. Phys., 2006, 124 (20): 137-159.
|
[19] |
LEVITT M, HIRSHBERG M, SHARON R, et al. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution [J]. J. Phys. Chem. B, 1997, 101 (25): 5051-5061.
|
[20] |
NIETO-DRAGHI C, DE BRUIN T, P REZ-PELLITERO J, et al. Thermodynamic and transport properties of carbon dioxide from molecular simulation [J]. J. Chem. Phys., 2007, 126 (6): 064509.
|
[21] |
CHANDRASEKHAR J, SPELLMEYER D C, JORGENSEN W L. Energy component analysis for dilute aqueous solutions of lithium (1+), sodium (1+), fluoride (1-), and chloride (1-) ions [J]. J. Am. Chem. Soc., 1984, 106 (4): 903-910.
|
[22] |
PRONK S, PALL S, SCHULZ R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit [J]. Bioinformatics, 2013, 29 (7): 845-854.
|
[23] |
BERENDSEN H J, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81 (8): 3684-3690.
|
[24] |
BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling [J]. J. Chem. Phys., 2007, 126 (1): 014101.
|
[25] |
ALEJANDRE J, TILDESLEY D J, CHAPELA G A. Molecular dynamics simulation of the orthobaric densities and surface tension of water [J]. J. Chem. Phys., 1995, 102 (11): 4574-4583.
|
[26] |
YUET P K, BLANKSCHTEIN D. Molecular dynamics simulation study of water surfaces: comparison of flexible water models [J]. J. Phys. Chem. B, 2010, 114 (43): 13786-13795.
|
[27] |
LI X, ROSS D A, TRUSLER J P, et al. Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures [J]. J. Chem. Eng. Data, 2013, 117 (18): 5647-5652.
|
[28] |
LEACH A R. Molecular Modelling: Principles and Applications [M]. 2nd ed. England, Harlow: Prentice Hall, 2001.
|
[29] |
SADLEJ J, MAKAREWICZ J, CHA?ASI?SKI G. Ab initio study of energy, structure and dynamics of the water-carbon dioxide complex [J]. J. Chem. Phys., 1998, 109 (10): 3919.
|
[30] |
TEWES F, BOURY F. Thermodynamic and dynamic interfacial properties of binary carbon dioxide-water systems [J]. J. Phys. Chem. B, 2004, 108 (7): 2405-2412.
|