[1] |
李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2):72-75. LI Z X, TIAN B K, ZUO J E, et al. Progress in treatment and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering, 2012, 30(2):72-75.
|
[2] |
PRUDEN A, LARSSON D G, AMÉZQUITA A, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment[J]. Environmental Health Perspectives, 2013, 121(8):878-885.
|
[3] |
HERNÁNDEZ F, SANCHO J V, IBÁÑEZ M, et al. Antibiotic residue determination in environmental waters by LC-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(6):466-485.
|
[4] |
成建华, 张文莉. 抗生素菌渣处理工艺设计[J]. 化工与医药工程, 2003, 24(2):31-34. CHENG J H, ZHANG W L. Design of engineering process for antibiotic bacterial disposal[J].Chemical and Pharmaceutical Engineering, 2003, 24(2):31-34.
|
[5] |
贡丽鹏, 郭斌, 任爱玲,等. 抗生素菌渣理化特性[J]. 河北科技大学学报, 2012, 33(2):190-196. GONG L P, GUO B, REN A L, et al. Physical and chemical properties of antibiotics bacterial residue[J].Journal of Hebei University of Science and Technology,2012, 33(2):190-196.
|
[6] |
ZHANG G, MA D, PENG C, et al. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical Engineering Journal, 2014, 252(252):230-238.
|
[7] |
BROEK R V D, FAAIJ A, WIJK A V. Biomass combustion for power generation[J]. Biomass & Bioenergy, 1996, 11(4):271-281.
|
[8] |
BHATTACHARYA S C. State of the art of biomass combustion[J]. Energy Sources, 1998, 20(2):113-135.
|
[9] |
WERTHER J, SAENGER M, HARTGE E U, et al. Combustion of agricultural residues[J]. Progress in Energy & Combustion Science, 2000, 26(1):1-27.
|
[10] |
MUSGRAVE F F, HINSHELWOOD C N. The interaction of carbon monoxide and nitric oxide[J]. J. Chem. Soc., 1933:56-59.
|
[11] |
ZHANG G, ZHU C, GE Y, et al. Fluidized bed combustion in steam-rich atmospheres for high-nitrogen fuel:nitrogen distribution in char and volatile and their contributions to NOx[J]. Fuel, 2016, 186:204-214.
|
[12] |
PERMCHART W, KOUPRIANOV V I. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels[J]. Bioresource Technology, 2004, 92(1):83-91.
|
[13] |
MA D, ZHANG G, AREEPRASERT C, et al. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chemical Engineering Journal, 2016, 284:708-715.
|
[14] |
HOU H, LI S, LU Q. Gaseous emission of monocombustion of sewage sludge in a circulating fluidized bed[J]. Ind. Eng. Chem. Res., 2013, 52(16):5556-5562.
|
[15] |
侯海盟. 城市下水污泥循环流化床焚烧及排放特性试验研究[D]. 北京:中国科学院研究生院(工程热物理研究所), 2013. HOU H M. Experimental study on incineration characteristics and pollutant emission of sewage sludge in circulating fluidized bed[D]. Beijing:Graduate University of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2013.
|
[16] |
李伟, 李诗媛, 徐明新,等. 循环流化床富氧燃烧SO2排放和石灰石脱硫特性研究[J]. 中国电机工程学报, 2014, 34(23):3932-3937. LI W, LI S Y, XU M X, et al. Study on SO2 emission and limestone desulfurization characteristics for oxy-fuel circulating fluidized bed combustion[J]. Proceedings of the CSEE,2014, 34(23):3932-3937.
|
[17] |
ZHU C, LIU S, LIU H, et al. NOx emission characteristics of fluidized bed combustion in atmospheres rich in oxygen and water vapor for high-nitrogen fuel[J]. Fuel, 2015, 139:346-355.
|
[18] |
GLARBORG P, KUBEL D, KRISTENSEN P G, et al. Interactions of CO, NOx and H2O under post-flame conditions[J]. Combustion Science and Technology, 1995, 110/111(1):461-485.
|
[19] |
LI S, WEI X, GUO X. Effect of H2O vapor on NO reduction by CO:experimental and kinetic modeling study[J]. Energy & Fuels, 2012, 26(7):4277-4283.
|
[20] |
刘欢. 流化床中燃烧高含水含氮酒糟的NO排放特性[D]. 北京:中国科学院大学, 2014. LIU H. NO emission from burning distilled spirit lees with high contents of moisture and nitrogen in a fluidized bed[D]. Beijing:University of Chinese Academy of Sciences, 2014.
|
[21] |
刘欢, 崔丽杰, 朱传强,等. 流化床中燃烧高水高氮酒糟的NO排放特性[J]. 化工学报, 2015, 66(7):2694-2701. LIU H, CUI L J, ZHU C Q, et al. NO emission from burning distilled spirit lees with high contents of moisture and nitrogen in fluidized bed[J]. CIESC Journal, 2015, 66(7):2694-2701.
|
[22] |
SHIMIZU T, TOYONO M. Emissions of NOx, and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor[J]. Fuel, 2007, 86(7/8):957-964.
|
[23] |
TOURUNEN A, SAASTAMOINEN J, NEVALAINEN H. Experimental trends of NO in circulating fluidized bed combustion[J]. Fuel, 2009, 88(7):1333-1341.
|
[24] |
WERTHER J, OGADA T. Sewage sludge combustion[J]. Progress in Energy & Combustion Science, 1999, 25(1):55-116.
|
[25] |
GARCA-CORTÉS J M, PREZ-RAMÍREZ J. Effect of the support in de-NOx HC-SCR over transition metal catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2000, 70(2):199-206.
|
[26] |
ZHAO Z, WEN L, LI B. Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres[J]. Fuel, 2002, 81(11/12):1559-1564.
|
[27] |
CZAKIERT T, MUSKALA W, JANKOWSKA S, et al. Combustible matter conversion in an oxy-fuel circulating fluidized-bed (CFB) environment[J]. Energy & Fuels, 2012, 26(9):5437-5445.
|
[28] |
郭浩然. 氧分级富氧燃烧条件下钙基吸附剂联合脱除的实验研究[D]. 哈尔滨:哈尔滨工业大学, 2013. GUO H R. Experimental research on the simultaneous reduction of pollutants by calcium-based sorbents with oxidant stated oxy-fuel combustion[D]. Harbin:Harbin Institute of Technology,2013.
|