CIESC Journal ›› 2017, Vol. 68 ›› Issue (8): 3056-3063.DOI: 10.11949/j.issn.0438-1157.20170123
Previous Articles Next Articles
ZENG Mingguo, LI Yongsheng, ZHAO Yang, DU Xin
Received:
2017-02-07
Revised:
2017-04-22
Online:
2017-05-19
Published:
2017-08-05
曾明国, 李永生, 赵炀, 杜鑫
通讯作者:
李永生
CLC Number:
ZENG Mingguo, LI Yongsheng, ZHAO Yang, DU Xin. Simultaneous determination of CoO and MoO3 in catalyst impregnation solutions by flow injection spectrophotometry[J]. CIESC Journal, 2017, 68(8): 3056-3063.
曾明国, 李永生, 赵炀, 杜鑫. 基于流动注射光度法同时测定催化剂浸渍液中CoO/MoO3[J]. 化工学报, 2017, 68(8): 3056-3063.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170123
[1] | FAN Y, SHI G, LIU H Y, et al. Selectivity enhancement of Co-Mo/Al2O3 FCC gasoline hydrodesulfurization catalysts via incorporation of mesoporous Si-SBA-15[J]. Fuel, 2011, 90(5):1717-1722. |
[2] | BAO J G, YANG Y Q, WANG W Y, et al. Preparation and hydrodeoxygenation properties of CoMo/ZrO2-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1):59-63. |
[3] | ZHANG K Y, LIU A H, HAO G Y, et al. Application of CoMo/Al2O3 catalyst prepared by wet-mixing kneading method in hydroconversion of Claus reaction tail gas[J]. Petrochemical Technology, 2005, 34(11):1095-1098. |
[4] | ZHANG Y F, ZHANG G J, ZHAO Y Q, et al. Ce-K-promoted Co-Mo/Al2O3 catalysts for the water gas shift reaction[J]. International Journal of Hydrogen Energy, 2012, 37(8):6363-6371. |
[5] | TSUJI Y, KITANO M, KISHIDA K, et al. Ammonia synthesis over Co-Mo alloy nanoparticle catalyst prepared via sodium naphthalenide-driven reduction[J]. Chemical Communications, 2016, 52:14369-14372. |
[6] | PAPADOPOULOU C, VAKROS J, MATRALIS H K, et al. Preparation, characterization, and catalytic activity of CoMo/γ-Al2O3 catalysts prepared by equilibrium deposition filtration and conventional impregnation techniques[J]. Journal of Colloid and Interface Science, 2004, 274(1):159-166. |
[7] | NIKULSHIN P A, MOZHAEV A V, PIMERZIN A A. CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate:effect of Co/Mo ratio[J]. Fuel, 2012, 100:24-33. |
[8] | CHAPARRO L, FERRER L, LEAL L, et al. A multisyringe flow-based system for kinetic-catalytic determination of cobalt(Ⅱ)[J]. Talanta, 2015, 133:94-99. |
[9] | NAKANO S, KAMAGUCHI C, HIRAKAWA N. Flow-injection catalytic spectrophotometic determination of molybdenum (Ⅵ) in plants using bromate oxidative coupling of p-hydrazinobensene sulfonic acid with N-(1-naphthyl)ethylene diamine[J]. Talanta, 2010, 81(3):786-791. |
[10] | MANSOURI A I, MIRZAEI M, AFZALI D, et al. Catalytic spectrophotometric determination of Mo(Ⅵ) in water samples using 4-amino-3-hydroxy-naphthalene sulfonic acid[J]. Arabian Journal of Chemistry, 2016, 9(S2):1105-1109. |
[11] | TEMEL N K, GURKAN R. Catalytic spectrophotometric determination of trace Mo(Ⅵ) in milk-based beverages in the presence of bromophenol blue and H2O2 using SDS as a sensitizer[J]. Analytical Methods, 2016, 8(33):6284-6292. |
[12] | ZHANG X F, ZHOU Q, LV Y, et al. Ultrasensitive determination of cobalt in single hair by capillary electrophoresis using chemiluminescence detector[J]. Microchemical Journal, 2010, 95(1):80-84. |
[13] | CHEN J Q, YU Y, ZHANG Z W, et al. NBS-rCDs(OH-) chemiluminescence analysis system for the determination of cobalt ions[J]. Diamond and Related Materials, 2015, 58:5-9. |
[14] | SHELLEY R U, ZACHHUBER B, SEDWICK P N, et al. Determination of total dissolved cobalt in UV-irradiated seawater using flow injection with chemiluminescence detection[J]. Limnology and Oceanography-Methods, 2010, 8:352-362. |
[15] | DU J X, LI J J, YANG L J, et al. Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential eletrolysis technique[J]. Analytica Chimica Acta, 2003, 481:239-244. |
[16] | 杨玲娟, 谢天柱, 雷新有. 恒电位电解流动注射化学发光分析法测定钢铁中微量钼[J]. 冶金分析, 2011, 31(11):24-28. YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis-flow injection chemiluminescence analysis[J]. Metallurgical Analysis, 2011, 31(11):24-28. |
[17] | GAO X F, IKEBUKURO K, LI Y S, et al. A novel assay for determination of sulfated bile acids in urine by use of flow-injection chemiluminescence principle with immobilized enzymes[J]. Laboratory Robotics and Automation (Wiley & Sons), 1997, 9(2):69-79. |
[18] | ZACHARIADIS G A, THEMELIS D G, KOSSEOGLOU D J, et al. Flame AAS and UV-VIS determination of cobalt, nickel and palladium using the synergetic effect of 2-benzoylpyridine-2-pyridylhydrazone and thiocyanate ions[J]. Talanta, 1998, 47(1):161-167. |
[19] | SHEGEFTI S, MEHDINIA A, SHEMIRANI F. Preconcentration of cobalt(Ⅱ) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS[J]. Microchimica Acta, 2016, 183(6):1963-1970. |
[20] | SHAMSIPUR M, HASHEMI O R, SAFAVI A. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid[J]. Analytical Sciences, 2005, 21(9):1063-1066. |
[21] | 邵从和. 电感耦合等离子体原子发射光谱法测定铜电积液中锑、铋、钴、镍和砷的含量[J]. 理化检验(化学分册), 2016, 52(6):691-694. SHAO C H. ICP-AES determination of stibium, bismuth, cobalt,nickel and arsenic in copper electrowinning solution[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(6):691-694. |
[22] | CANFRANC E, ABARCA A, SIERRA I. Determination of iron and molybdenum in a dietetic preparation by flame AAS after dry ashing[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25:103-108. |
[23] | BOSCHETTI W, BORGES A R, DUARTE A T, et al. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS[J]. Analytical Methods, 2014, 6(12):4247-4256. |
[24] | KAI X M, CHENG L, JIE W, et al. Determination of W, Mo and other 8 elements in powder metallurgical materials by ICP-AES[J]. Spectroscopy and Spectral Analysis, 2007, 27(12):2578-2580. |
[25] | 张世龙, 黄启华, 胡小明, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中硅、铁、铝、钛、钨、锡和钼的含量[J]. 理化检验(化学分册), 2016, 52(10):1237-1240. ZHANG S L, HUANG Q H, HU X M, et al. ICP-AES determination of Si,Fe,Al,Ti,W,Sn and Mo in tungsten ores[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(10):1237-1240. |
[26] | 中国工业和信息化部. 有机硫加氢催化剂活性组分分析方法:HG/T 2515-2013[S]. 北京:化学工业出版社, 2014. Ministry of Industry and Information Technology of the People's Republic of China. Analytical method of the active composition in organic sulfur hydrogenation catalyst:HG/T 2515-2013[S]. Beijing:Chemical Industry Press, 2014. |
[27] | LI Y S, GAO X F. Flow Injection Analysis and Application for Chemistry Analysis[M]. Jilin:The Jilin People's Publisher, 2002:2-15. |
[28] | LI Y S, XING C X, YANG L L. Determination of trace-level sodium ion in water-steam system of power plants using an FIA/ISE method with an automatic penetration and alkalization apparatus[J]. Analytical Science, 2005, 21(3):273-279. |
[29] | 张红, 李永生, 李乔婧, 等. 流动注射-分光光度法测定钴钼催化剂浸渍液中高浓度钼离子[J]. 理化检验(化学分册), 2013, 49(6):713-719. ZHANG H, LI Y S, LI Q J, et al. FI-spectrophotometric determination of molybdenum of high concentration in maceration extract of cobalt-molybdenum catalysts[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6):713-719. |
[30] | 杜鑫, 李永生. 基于磷钼蓝反应测定钴-钼催化剂浸渍液中钼离子含量[J]. 理化检验(化学分册), 2015, 51(3):296-299. DU X, LI Y S. Determination of molybdenum ion in impregnation solution of Co-Mo catalysts based on the reaction of phosphorus molybdenum blue[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2015, 51(3):296-299. |
[31] | 孙宝莲, 李波, 王国栋, 等. 硫氰酸盐光度法测定氨浸渣中的钼[J]. 稀有金属材料与工程, 2009, 38(12):2253-2255. SUN B L, LI B, WANG G D, et al. Spectrophotometric determination of molybdenum in the ammonia leaching residue using thiocyanate[J]. Rare Metal Materials and Engineering, 2009, 38(12):2253-2255. |
[32] | LI Y S, MUO Y, XIE H M. Simultaneous determination of silicate and phosphate in boiler water at power plants based on series flow cells by using flow injection spectrophotometry[J]. Analytica Chimica Acta, 2002, 455:315-325.of Colloid and Interface Science, 2004, 274(1): 159~166. |
[7] | NIKULSHIN P A, MOZHAEV A V, PIMERZIN A A. CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate: Effect of Co/Mo ratio [J]. Fuel, 2012, 100: 24~33. |
[8] | CHAPARRO L, FERRER L, LEAL L, et al. A multisyringe flow-based system for kinetic-catalytic determination of cobalt(Ⅱ) [J]. Talanta, 2015, 133: 94~99. |
[9] | NAKANO S, KAMAGUCHI C, HIRAKAWA N. Flow-injection catalytic spectrophotometic determination of molybdenum (Ⅵ) in plants using bromate oxidative coupling of p-hydrazinobensene sulfonic acid with N-(1-naphthyl)ethylene diamine [J]. Talanta, 2010, 81(3): 786~791. |
[10] | MANSOURI A I, MIRZAEI M, AFZALI D, et al. Catalytic spectrophotometric determination of Mo(Ⅵ) in water samples using 4-amino-3-hydroxy-naphthalene sulfonic acid[J]. Arabian Journal of Chemistry, 2016, 9(S2): 1105~1109. |
[11] | TEMEL N K, GURKAN R. Catalytic spectrophotometric determination of trace Mo(Ⅵ) in milk-based beverages in the presence of bromophenol blue and H2O2 using SDS as a sensitizer[J]. Analytical Methods, 2016, 8(33): 6284~6292. |
[12] | ZHANG X F, ZHOU Q, LV Y, et al. Ultrasensitive determination of cobalt in single hair by capillary electrophoresis using chemiluminescence detector [J]. Microchemical Joural, 2010, 95(1): 80~84. |
[13] | CHEN J Q, YU Y, ZHANG Z W, et al. NBS-rCDs(OH-) chemiluminescence analysis system for the determination of cobalt ions[J]. Diamond and Related Materials, 2015, 58(none): 5~9. |
[14] | SHELLEY R U, ZACHHUBER B, SEDWICK P N, et al. Determination of total dissolved cobalt in UV-irradiated seawater using flow injection with chemiluminescence detection [J]. Limnology and Oceanography-methods, 2010, 8(none): 352~362. |
[15] | DU J X, LI J J, YANG L J, et al. Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential eletrolysis technique[J]. Analytica Chimica Acta, 2003, 481(none): 239~244. |
[16] | 杨玲娟, 谢天柱, 雷新有. 恒电位电解流动注射化学发光分析法测定钢铁中微量钼[J]. 冶金分析, 2011, 31(11): 24~28. YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis - flow injection chemiluminescence analysis[J]. Metallurgical Analysis, 2011, 31(11): 24~28. |
[17] | GAO X F, IKEBUKURO K, LI Y S, et al. A novel assay for determination of sulfated bile acids in urine by use of flow-injection chemiluminescence principle with immobilized enzymes[J]. Laboratory Robotics and Automation (Wiley & Sons), 1997, 9(2): 69~79. |
[18] | ZACHARIADIS G A, THEMELIS D G, KOSSEOGLOU D J, et al. Flame AAS and UV-ⅥS determination of cobalt, nickel and palladium using the synergetic effect of 2-benzoylpyridine-2-pyridylhydrazone and thiocyanate ions [J]. Talanta, 1998, 47(1): 161~167. |
[19] | SHEGEFTI S, MEHDINIA A, SHEMIRANI F. Preconcentration of cobalt(Ⅱ) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS[J]. Microchimica Acta, 2016. 183(6): 1963~1970. |
[20] | SHAMSIPUR M, HASHEMI O R, SAFAⅥ A. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid[J]. Analytical Sciences, 2005, 21(9): 1063~1066. |
[21] | 邵从和. 电感耦合等离子体原子发射光谱法测定铜电积液中锑、铋、钴、镍和砷的含量[J]. 理化检验(化学分册), 2016, 52(6): 691~694. SHAO C H. ICP-AES Determination of Stibium, Bismuth, Cobalt,Nickel and Arsenic in Copper Electrowinning Solution[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(6): 691~694. |
[22] | CANFRANC E, ABARCA A, SIERRA I. Determination of iron and molybdenum in a dietetic preparation by flame AAS after dry ashing [J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25(none): 103~108. |
[23] | BOSCHETTI W, BORGES A R, DUARTE A T, et al. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS[J]. Analytical Methods, 2014, 6(12): 4247~4256. |
[24] | KAI X M, CHENG L, JIE W, et al. Determination of W, Mo and other 8 elements in powder metallurgical materials by ICP-AES [J]. Spectroscopy and Spectral Analysis, 2007, 27(12): 2578~2580. |
[25] | 张世龙, 黄启华, 胡小明, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中硅、铁、铝、钛、钨、锡和钼的含量简[J]. 理化检验(化学分册), 2016, 52(10): 1237~1240. ZHANG S L, HUANG Q H, HU X M, et al. ICP-AES Determination of Si,Fe,Al,Ti,W,Sn and Mo in Tungsten Ores[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(10): 1237~1240. |
[26] | 中国工业和信息化部. 有机硫加氢催化剂活性组分分析方法: HG/T 2515-2013[S]. 北京: 化学工业出版社, 2014. Ministry of Industry and Information Technology of the People's Republic of China. Analytical method of the active composition in organic sulfur hydrogenation catalyst: HG/T 2515-2013[S]. Beijing: Chemical industry press, 2014. |
[27] | LI Y S, GAO X F. Flow injection analysis and application for chemistry analysis [M]. Jilin: The Jilin People's Publisher, 2002: 2~15. |
[28] | LI Y S, XING C X, YANG L L. Determination of trace-level sodium ion in water-steam system of power plants using an FIA/ISE method with an automatic penetration and alkalization apparatus [J]. Analytical Science, 2005, 21(3), 273~279. |
[29] | 张红, 李永生, 李乔婧, 等. 流动注射-分光光度法测定钴钼催化剂浸渍液中高浓度钼离子[J]. 理化检验(化学分册), 2013, 49(6): 713~719.ZHANG H, LI Y S, LI Q J, et al. FI-spectrophotometric determination of molybdenum of high concentration in maceration extract of cobalt-molybdenum catalysts [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6): 713~719. |
[30] | 杜鑫, 李永生. 基于磷钼蓝反应测定钴-钼催化剂浸渍液中钼离子含量[J]. 理化检验(化学分册), 2015, 51(3): 296~299.DU X, LI Y S. Determination of molybdenum ion in impregnation solution of Co-Mo catalysts based on the reaction of phosphorus molybdenum blue [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2015, 51(3): 296~299. |
[31] | 孙宝莲, 李波, 王国栋, 等. 硫氰酸盐光度法测定氨浸渣中的钼[J]. 稀有金属材料与工程, 2009, 38(12): 2253~2255. SUN B L, LI B, WANG G D, et al. Spectrophotometric determination of molybdenum in the ammonia leaching residue using thiocyanate [J]. Rare Metal Materials and Engineering, 2009, 38(12): 2253~2255. |
[32] | LI Y S, Muo Y, XIE H M, Simultaneous determination of silicate and phosphate in boiler water at power plants based on series flow cells by using flow injection spectrophotometry [J]. Analytica Chimica Acta, 2002, 455: 315-325. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[3] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[4] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[5] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[6] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[7] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[8] | Ruyi TANG, Hanqian PAN, Xiajun ZHENG, Guangxin ZHANG, Xingping WANG, Xili CUI, Huabin XING. Structural characterization of Z-type perfluoropolyether [J]. CIESC Journal, 2023, 74(1): 479-486. |
[9] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[10] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[11] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
[12] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[13] | Huaixu LI, Xiaoyan SUN, Shaohui TAO, Li XIA, Shuguang XIANG. Lumping gasoline with molecular properties and density peak clustering [J]. CIESC Journal, 2022, 73(12): 5449-5460. |
[14] | Shuai YAN, Haiping YANG, Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN. Recent advances in photothermal catalysis of CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4298-4310. |
[15] | Dong GUAN, Linzhou ZHANG, Suoqi ZHAO, Chunming XU. Dissipative particle dynamics simulation of the stability of heavy oil [J]. CIESC Journal, 2022, 73(10): 4613-4624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||