[1] |
WAREING C J, FAIRWEATHER M, FALLE S A E G, et al. Validation of a model of gas and dense phase CO2 jet releases for carbon capture and storage application[J]. International Journal of Greenhouse Gas Control, 2014, 20(1):254-271.
|
[2] |
BROWN S, MARTYNOV S, MAHGEREFTEH H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17(9):349-356.
|
[3] |
LI K, ZHOU X, TU R, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71(21):665-672.
|
[4] |
ZHANG Z X, WANG G X, MASSAROTTO P, et al. Optimization of pipeline transport for CO2 sequestration[J]. Energy Conversion & Management, 2006, 47(6):702-715.
|
[5] |
KOEIJER G D, BORCH J H, DRESCHER M, et al. CO2 transport depressurization, heat transfer and impurities[J]. Energy Procedia, 2011, 4(22):3008-3015.
|
[6] |
KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Uncertainties in risk assessment of CO2 pipelines[J]. Energy Procedia, 2009, 1(1):1587-1594.
|
[7] |
BUMB P, DESIDERI U, QUATTROCCHI F, et al. Cost optimized CO2 pipeline transportation grid:a case study from Italian industries[J]. World Academy of Science Engineering & Technology, 2009, (58):138-145.
|
[8] |
DRESCHER M, VARHOLM K, MUNKEJORD S T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63:2448-2457.
|
[9] |
AHMAD M, LOWESMITH B, KOEIJER G D, et al. COSHER joint industry project:large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control, 2015, 37:340-353.
|
[10] |
COSHAM A, JONES D G, ARMSTRONG K, et al. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines[C]//International Pipeline Conference. USA, 2012:465-482.
|
[11] |
HAN S H, KIM J, CHANG D. An experimental investigation of liquid CO2 release through a capillary tube[J]. Energy Procedia, 2013, 37:4724-4730.
|
[12] |
MAHGEREFTEH H, BROWN S, DENTON G. Modelling the impact of stream impurities on ductile fractures in CO2 pipelines[J]. Chemical Engineering Science, 2012, 74(22):200-210.
|
[13] |
BROWN S, PERISTERAS L D, MARTYNOV S, et al. Thermodynamic interpolation for the simulation of two-phase flow of non-ideal mixtures[J]. Computers & Chemical Engineering, 2016, 95:49-57.
|
[14] |
KOEIJERA G D, BORCH J H, JAKOBSENB J, et al. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization[J]. Energy Procedia, 2009, 1:1683-1689.
|
[15] |
DRESCHER M, VARHOLM K, MUNKEJORD S T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63:2448-2457.
|
[16] |
XIE Q, TU R, JIANG X, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Applied Energy, 2014, 130(5):574-580.
|
[17] |
喻健良, 郭晓璐, 陈绍云. 工业规模CO2管道泄放装置设计和试验研究[C]//第二届CCPS中国过程安全会议. 青岛, 2014:440-446. YU J L,GUO X L,CHEN S Y. Design and experimental study of the CO2 pipeline relief equipment in industry scale[C]//The 2nd CCPS Conference on Process Safety. Qingdao, 2014:440-446.
|
[18] |
GUO X, YAN X, YU J, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178:189-197.
|
[19] |
GUO X, YAN X, YU J, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2016, 118:1-13.
|
[20] |
喻健良, 郭晓璐, 闫兴清,等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11):4327-4334. YU J L, GUO X L, YAN X Q, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11):4327-4334.
|
[21] |
GUO X, YAN X, YU J, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 183:1279-1291.
|
[22] |
GUO X, YAN X, ZHENG Y G, et al. Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline[J]. Energy, 2016, 119:53-66
|
[23] |
BARTAK J. A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water[J]. International Journal of Multiphase Flow, 1990, 16(5):789-798.
|
[24] |
LI K, ZHOU X, TU R, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71(21):665-672.
|
[25] |
杨昆, 刘伟. 管内层流充分发展段等效热边界层的构造及其场协同分析[J]. 工程热物理学报, 2007, 28(2):283-285. YANG K, LIU W. Forming an equivalent thermal boundary layer for fully-developed laminar tube flow and its field synergy analysis[J]. Journal of Engineering Thermophysics, 2007, 28(2):283-285.
|
[26] |
HIGASHI Y. NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures (REFPROP)[J]. Netsu Bussei, 2000, 14(4):1575-1577.
|
[27] |
TREFETHEN L N. Computation of pseudospectra[J]. Acta Numerica, 1999, 8(2):247-295.
|
[28] |
WEI Y, VARZANDEH F, STENBY E H. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS[J]. Fluid Phase Equilibria, 2015, 386:96-124.
|
[29] |
MARTYNOV S B, DAUD N K, MAHGEREFTEH H, et al. Impact of stream impurities on compressor power requirements for CO2, pipeline transportation[J]. International Journal of Greenhouse Gas Control, 2016, 54:652-661.
|