[1] |
何祚庥. 三论我国必须大幅度调整核能政策[J]. 山东科技大学学报(社会科学版), 2011, 13(5):1-6. HE Z X. The third relate:we must take adjustments to nuclear policy in our country[J]. Journal of Shandong University of Science and Technology (Social Sciences), 2011, 13(5):1-6.
|
[2] |
常阳, 崔建勇, 谭靖, 等. 尕斯库勒盐湖水中铀形态分布及影响因素[J]. 世界核地质科学, 2016, 33:106-110. CHANG Y, CUI J Y, TAN J, et al. Analysis on uranium existing forms and its afection factors in saline-water of Gas Hure Lake[J]. World Nuclear Geoscience, 2016, 33:106-110.
|
[3] |
PLACZEK C J, HEIKOOP J M, HOUSE B, et al. Uranium isotope composition of waters from south Texas uranium ore deposits[J]. Chemical Geology, 2016, 437:44-55.
|
[4] |
邓冰, 刘宁, 王和义. 铀的毒性研究进展[J]. 中国辐射卫生, 2010, 19(1):113-116. DENG B, LIU N, WANG H Y. Uranium toxicity research progress[J]. China Radiation Health, 2010, 19(1):113-116.
|
[5] |
LU C, ZHANG P, JIANG S, et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst[J]. Applied Catalysis B:Environmental, 2017, 200:378-385.
|
[6] |
GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Res., 2015, 75:224-248.
|
[7] |
FIEDOR J, BOSTICK W, JARABEK R, et al. Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy[J]. Environ. Sci. Technol., 1998, 32:1466-1473.
|
[8] |
GU B, LIANG L, DLCKEY M J, et al. Reductive precipitation of uranium(Ⅵ) by zero-valent iron[J]. Environ. Sci. Technol., 1998, 32:3366-3373.
|
[9] |
MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ. Sci. Technol., 1994, 28:2045-2053.
|
[10] |
UHLEMANN M, KRAUSE A, GEBERT A. Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction[J]. J. Hazard. Mater., 2005, 126(1/2/3):189-194.
|
[11] |
HUNG H M, HOFFMANN M. Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound[J]. Environ. Sci. Technol., 1998, 32:3011-3016.
|
[12] |
XU J, HAO Z W, XIE C S, et al. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron[J]. Desalination, 2012, 284:9-13.
|
[13] |
HUANG Y H, TANG C L, ZENG H. Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(Ⅱ) treatment system[J]. Chemical Engineering Journal, 2012, 200/201/202:257-263.
|
[14] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environ. Sci. Technol., 1997, 31:2154-2156.
|
[15] |
LIEN H L, ZHANG W X. Translation of chlorinated methanes by nanoscale iron particles[J]. J. Environ. Eng., 125(11):1042-1047.
|
[16] |
LIANG L P, SUN W, GUAN X H, et al. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron[J]. Water Res., 2014, 49:371-380.
|
[17] |
SUN Y K, GUAN X H, WANG J M. et al. Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron:an XAFS investigation[J]. Environ. Sci. Technol., 2014, 48(12):6850-6858.
|
[18] |
FENG P, GUAN X H, SUN Y K. et al. Weak magnetic field accelerates chromate removal by zero-valent iron[J]. Journal of Environmental Sciences, 2015, 31:175-183.
|
[19] |
JIANG X, QIAO J L, WANG L. et al. Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron[J]. J. Hazard. Mater., 2015, 283:880-887.
|
[20] |
LI J L, BAO H L, XIONG X M, et al. Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field[J]. Separation And Purification Technology, 2015, 151:276-283.
|
[21] |
TRISZCZ J M, PORTA A, EINSCHLAG F S. Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal[J]. Chemical Engineering Journal, 2009, 150(2/3):431-439.
|
[22] |
ALLEN G C, TRICKLE I R, TUCKER P M. Surface characterization of uranium metal and uranium dioxide using X-ray photoelectron spectroscopy[J]. Philosophical Magazine Part B, 2006, 43(4):689-703.
|
[23] |
RIBA O, SCOTT T B, ALLEN G C. et al. Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles[J]. Geochimica et Cosmochimica Acta, 2008, 72(16):4047-4057.
|
[24] |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449.
|
[25] |
WANG R, YE J W, RAUT A, et al. Microwave-induced synthesis of pyrophosphate Zr1-xTixP2O7 and TiP2O7 with enhanced sorption capacity for uranium(Ⅵ)[J]. J. Hazard. Mater., 2016, 315:76-85.
|
[26] |
谢水波, 罗景阳, 刘清, 等. 羟乙基纤维素-海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32:268-275. XIE S B, LUO J Y, LIU Q, et al. Adsorption of HEC/SA membrane toward U(Ⅵ) and the mechanism[J]. Acta Materiae Compositae Sinica, 2015, 32:268-275.
|
[27] |
JIN Q, SU L, MONTAVON G, et al. Surface complexation modeling of U(Ⅵ) adsorption on granite at ambient/elevated temperature:Experimental and XPS study[J]. Chemical Geology, 2016, 433:81-91.
|
[28] |
ZENG H, SINGH A, BASAK S, et al. Nanoscale size effects on uranium(Ⅵ) adsorption to hematit[J]. Environ. Sci. Technol., 2009, 43:1373-1378.
|
[29] |
KARIMZADEH S N, MERKEL B J. Sorption of uranyl and arsenate on SiO2, Al2O3, TiO2 and FeOOH[J]. Environ. Earth Sci., 2014, 72:3507-3512.
|
[30] |
MAHMOUD M A. Adsorption of U(Ⅵ) ions from aqueous solution using silicon dioxide nanopowder[J/OL]. Journal of Saudi Chemical Society, 2016. http://creativecommons.org/licenses/by-nc-nd/4.0/.
|
[31] |
SUN Y B, LI J X, WANG X K. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques[J]. Geochimica et Cosmochimica Acta, 2014, 140:621-643.
|
[32] |
刘小玲, 陈晓明, 宋收, 等. 柠檬酸杆菌对U(Ⅵ)的去除效应及机理研究[J]. 核农学报, 2015, 29:1774-1781. LIU X L, CHEN X M, SONG S, et al. The effect and mechanism of Citrobacter freundii toward U(Ⅵ) removal[J]. Journal of Nuclear Agricultural Sciences, 2015, 29:1774-1781.
|
[33] |
吴唯民, JACK W, DAVID W. 地下水铀污染的原位微生物还原与固定:在美国能源部田纳西橡树岭放射物污染现场的试验[J]. 环境科学学报, 2011, 31:449-459. WU W M, JACK W, DAVID W. Bio reduction and immobilization of uranium insitu:a case study at a USA department of energy radioactive waste site, OakRidge, Tennessee[J]. Journal of Environmental Science, 2011, 31:449-459.
|
[34] |
SHENG G D, YANG P J, TANG Y N, et al. New insights into the primary roles of diatomite in the enhanced sequestration of by zerovalent iron nanoparticles:an advanced approach utilizing XPS and EXAFS[J]. Applied Catalysis B:Environmental, 2016, 193:189-197.
|
[35] |
YAN S, CHEN Y H, XIANG W, et al. Uranium (Ⅵ) reduction by nanoscale zero-valent iron in anoxic batch systems:the role of Fe(Ⅱ) and Fe(Ⅲ)[J]. Chemosphere, 2014, 117:625-630.
|