CIESC Journal ›› 2017, Vol. 68 ›› Issue (8): 3282-3290.DOI: 10.11949/j.issn.0438-1157.20170196
Previous Articles Next Articles
CAO Bei, LI Jinxiang, GUAN Xiaohong
Received:
2017-02-28
Revised:
2017-04-25
Online:
2017-08-05
Published:
2017-08-05
Supported by:
supported by the National Natural Science Foundation of China (21522704).
曹贝, 李锦祥, 关小红
通讯作者:
关小红
基金资助:
国家自然科学基金项目(21522704)。
CLC Number:
CAO Bei, LI Jinxiang, GUAN Xiaohong. Enhancing reactivity of zerovalent iron toward U (Ⅵ) by weak magnetic field[J]. CIESC Journal, 2017, 68(8): 3282-3290.
曹贝, 李锦祥, 关小红. 弱磁场强化零价铁对水中U(Ⅵ)去除效能[J]. 化工学报, 2017, 68(8): 3282-3290.
[1] | 何祚庥. 三论我国必须大幅度调整核能政策[J]. 山东科技大学学报(社会科学版), 2011, 13(5):1-6. HE Z X. The third relate:we must take adjustments to nuclear policy in our country[J]. Journal of Shandong University of Science and Technology (Social Sciences), 2011, 13(5):1-6. |
[2] | 常阳, 崔建勇, 谭靖, 等. 尕斯库勒盐湖水中铀形态分布及影响因素[J]. 世界核地质科学, 2016, 33:106-110. CHANG Y, CUI J Y, TAN J, et al. Analysis on uranium existing forms and its afection factors in saline-water of Gas Hure Lake[J]. World Nuclear Geoscience, 2016, 33:106-110. |
[3] | PLACZEK C J, HEIKOOP J M, HOUSE B, et al. Uranium isotope composition of waters from south Texas uranium ore deposits[J]. Chemical Geology, 2016, 437:44-55. |
[4] | 邓冰, 刘宁, 王和义. 铀的毒性研究进展[J]. 中国辐射卫生, 2010, 19(1):113-116. DENG B, LIU N, WANG H Y. Uranium toxicity research progress[J]. China Radiation Health, 2010, 19(1):113-116. |
[5] | LU C, ZHANG P, JIANG S, et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst[J]. Applied Catalysis B:Environmental, 2017, 200:378-385. |
[6] | GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Res., 2015, 75:224-248. |
[7] | FIEDOR J, BOSTICK W, JARABEK R, et al. Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy[J]. Environ. Sci. Technol., 1998, 32:1466-1473. |
[8] | GU B, LIANG L, DLCKEY M J, et al. Reductive precipitation of uranium(Ⅵ) by zero-valent iron[J]. Environ. Sci. Technol., 1998, 32:3366-3373. |
[9] | MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ. Sci. Technol., 1994, 28:2045-2053. |
[10] | UHLEMANN M, KRAUSE A, GEBERT A. Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction[J]. J. Hazard. Mater., 2005, 126(1/2/3):189-194. |
[11] | HUNG H M, HOFFMANN M. Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound[J]. Environ. Sci. Technol., 1998, 32:3011-3016. |
[12] | XU J, HAO Z W, XIE C S, et al. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron[J]. Desalination, 2012, 284:9-13. |
[13] | HUANG Y H, TANG C L, ZENG H. Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(Ⅱ) treatment system[J]. Chemical Engineering Journal, 2012, 200/201/202:257-263. |
[14] | WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environ. Sci. Technol., 1997, 31:2154-2156. |
[15] | LIEN H L, ZHANG W X. Translation of chlorinated methanes by nanoscale iron particles[J]. J. Environ. Eng., 125(11):1042-1047. |
[16] | LIANG L P, SUN W, GUAN X H, et al. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron[J]. Water Res., 2014, 49:371-380. |
[17] | SUN Y K, GUAN X H, WANG J M. et al. Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron:an XAFS investigation[J]. Environ. Sci. Technol., 2014, 48(12):6850-6858. |
[18] | FENG P, GUAN X H, SUN Y K. et al. Weak magnetic field accelerates chromate removal by zero-valent iron[J]. Journal of Environmental Sciences, 2015, 31:175-183. |
[19] | JIANG X, QIAO J L, WANG L. et al. Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron[J]. J. Hazard. Mater., 2015, 283:880-887. |
[20] | LI J L, BAO H L, XIONG X M, et al. Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field[J]. Separation And Purification Technology, 2015, 151:276-283. |
[21] | TRISZCZ J M, PORTA A, EINSCHLAG F S. Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal[J]. Chemical Engineering Journal, 2009, 150(2/3):431-439. |
[22] | ALLEN G C, TRICKLE I R, TUCKER P M. Surface characterization of uranium metal and uranium dioxide using X-ray photoelectron spectroscopy[J]. Philosophical Magazine Part B, 2006, 43(4):689-703. |
[23] | RIBA O, SCOTT T B, ALLEN G C. et al. Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles[J]. Geochimica et Cosmochimica Acta, 2008, 72(16):4047-4057. |
[24] | YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449. |
[25] | WANG R, YE J W, RAUT A, et al. Microwave-induced synthesis of pyrophosphate Zr1-xTixP2O7 and TiP2O7 with enhanced sorption capacity for uranium(Ⅵ)[J]. J. Hazard. Mater., 2016, 315:76-85. |
[26] | 谢水波, 罗景阳, 刘清, 等. 羟乙基纤维素-海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32:268-275. XIE S B, LUO J Y, LIU Q, et al. Adsorption of HEC/SA membrane toward U(Ⅵ) and the mechanism[J]. Acta Materiae Compositae Sinica, 2015, 32:268-275. |
[27] | JIN Q, SU L, MONTAVON G, et al. Surface complexation modeling of U(Ⅵ) adsorption on granite at ambient/elevated temperature:Experimental and XPS study[J]. Chemical Geology, 2016, 433:81-91. |
[28] | ZENG H, SINGH A, BASAK S, et al. Nanoscale size effects on uranium(Ⅵ) adsorption to hematit[J]. Environ. Sci. Technol., 2009, 43:1373-1378. |
[29] | KARIMZADEH S N, MERKEL B J. Sorption of uranyl and arsenate on SiO2, Al2O3, TiO2 and FeOOH[J]. Environ. Earth Sci., 2014, 72:3507-3512. |
[30] | MAHMOUD M A. Adsorption of U(Ⅵ) ions from aqueous solution using silicon dioxide nanopowder[J/OL]. Journal of Saudi Chemical Society, 2016. http://creativecommons.org/licenses/by-nc-nd/4.0/. |
[31] | SUN Y B, LI J X, WANG X K. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques[J]. Geochimica et Cosmochimica Acta, 2014, 140:621-643. |
[32] | 刘小玲, 陈晓明, 宋收, 等. 柠檬酸杆菌对U(Ⅵ)的去除效应及机理研究[J]. 核农学报, 2015, 29:1774-1781. LIU X L, CHEN X M, SONG S, et al. The effect and mechanism of Citrobacter freundii toward U(Ⅵ) removal[J]. Journal of Nuclear Agricultural Sciences, 2015, 29:1774-1781. |
[33] | 吴唯民, JACK W, DAVID W. 地下水铀污染的原位微生物还原与固定:在美国能源部田纳西橡树岭放射物污染现场的试验[J]. 环境科学学报, 2011, 31:449-459. WU W M, JACK W, DAVID W. Bio reduction and immobilization of uranium insitu:a case study at a USA department of energy radioactive waste site, OakRidge, Tennessee[J]. Journal of Environmental Science, 2011, 31:449-459. |
[34] | SHENG G D, YANG P J, TANG Y N, et al. New insights into the primary roles of diatomite in the enhanced sequestration of by zerovalent iron nanoparticles:an advanced approach utilizing XPS and EXAFS[J]. Applied Catalysis B:Environmental, 2016, 193:189-197. |
[35] | YAN S, CHEN Y H, XIANG W, et al. Uranium (Ⅵ) reduction by nanoscale zero-valent iron in anoxic batch systems:the role of Fe(Ⅱ) and Fe(Ⅲ)[J]. Chemosphere, 2014, 117:625-630. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[10] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[11] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[12] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[13] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[14] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 719
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 431
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||