[1] |
ZEIDLER S, PUHLFÜRß P, KÄTZEL U, et al. Preparation and characterization of new low MWCO ceramic nanofiltration membranes for organic solvents[J]. J. Membr. Sci., 2014, 470(470):421-430.
|
[2] |
HA T J, PARK H H, JANG H W, et al. Study on the thermal stability of ordered mesoporous SiO2, film for thermal insulating film[J]. Microporous Mesoporous Mater., 2012, 158(8):123-128.
|
[3] |
SCHAEP J, VANDECASTEELE C, PEETERS B, et al. Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration[J]. J. Membr. Sci., 1999, 163(2):229-237.
|
[4] |
SEKULI? J, TEN ELSHOF J, BLANK D H A. A microporous titania membrane for nanofiltration and pervaporation[J]. Adv. Mater., 2004, 16(17):1546-1550.
|
[5] |
QI H, ZHU G Z, LI L, et al. Fabrication of a sol-gel derived microporous zirconia membrane for nanofiltration[J]. J. Sol-Gel Sci. Technol., 2012, 62(2):208-216.
|
[6] |
TSURU T, WADA S I, IZUMI S, et al. Silica-zirconia membranes for nanofiltration[J]. J. Membr. Sci., 1998, 149(1):127-135.
|
[7] |
HAO Y X, LI J S, YANG X J, et al. Preparation of ZrO2-Al2O3 composite membranes by sol-gel process and their characterization[J]. Mater. Sci. Eng. A, 2004, 367(1/2):243-247.
|
[8] |
SPIJKSMA G I, HUISKES C, BENES N E, et al. Microporous zirconia-titania composite membranes derived from diethanolamine-modified precursors[J]. Adv. Mater., 2010, 18(16):2165-2168.
|
[9] |
GESTEL T V, VANDECASTEELE C, BUEKENHOUDT A, et al. Alumina and titania multilayer membranes for nanofiltration:preparation, characterization and chemical stability[J]. J. Membr. Sci., 2002, 207(1):73-89.
|
[10] |
GUO H L, ZHAO S F, WU X X, et al. Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration[J]. Microporous Mesoporous Mater., 2016. DOI:10.1016/j.micromeso.2016.03.011.
|
[11] |
ZHU G Z, JIANG Q, QI H, et al. Effect of sol size on nanofiltration performance of a sol-gel derived microporous zirconia membrane[J]. Chin. J. Chem. Eng., 2015, 23(1):31-41.
|
[12] |
PUTHAI W, KANEZASHI M, NAGASAWA H, et al. Effect of firing temperature on the water permeability of SiO2-ZrO2 membranes for nanofiltration[J]. J. Membr. Sci., 2016, 497:348-356.
|
[13] |
申兴丛, 徐杰, 张睿, 等. 纳米TiO2的溶胶-凝胶法制备及其表征[J]. 浙江理工大学学报, 2012, 29(2):249-253. SHEN X C, XU J, ZHANG R, et al. Preparation of nano-TiO2 via sol-gel method and its characterization[J]. J. Zhejiang Sci-Tech Univ., 2012, 29(2):249-253.
|
[14] |
FUKUMOTO T, YOSHIOKA T, NAGASAWA H, et al. Development and gas permeation properties of microporous amorphous TiO2-ZrO2-organic composite membranes using chelating ligands[J]. J. Membr. Sci., 2014, 461(461):96-105.
|
[15] |
GESTEL T V, SEBOLD D, HAULER F, et al. Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants:evaluation of SiO2, ZrO2, Y2O3-ZrO2 and TiO2-ZrO2 sol-gel membranes[J]. J. Membr. Sci., 2010, 359:64-79.
|
[16] |
SCHWAMBERGER A, ROO B D, JACOB D, et al. Combining SAXS and DLS for simultaneous measurements and time-resolved monitoring of nanoparticle synthesis[J]. Nucl. Instrum. Methods B, 2015, 343:116-122.
|
[17] |
ZHOU H, WILKES G L. Comparison of lamellar thickness and its distribution determined from d.s.c. SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology[J]. Polymer, 1997, 38(23):5735-5747.
|
[18] |
徐耀, 吴东, 孙予罕, 等. 小角X射线散射法研究氧化硅溶胶的制备环境依赖性[J]. 物理学报, 2005, 54(6):2814-2820. XU Y, WU D, SUN Y H, et al. Dependence of silica sol properties on synthesis situation studied by SAXS[J]. Acta Phys. Sin., 2005, 54(6):2814-2820.
|
[19] |
朱育平. 小角X射线散射——理论、测试、计算及应用[M]. 北京:化学工业出版社, 2008:2-4. ZHU Y P. Small Angle X-ray Scattering-Theory, Test, Calculation and Application[M]. Beijing:Chemical Industry Press, 2008:2-4.
|
[20] |
LI Z H, WU Z H, MO G, et al. A small-angle X-ray scattering station at beijing synchrotron radiation facility[J]. Instrum. Sci. & Technol., 2014, 42(2):128-141.
|
[21] |
HAMMERSLEY A P. FIT2D:a multi-purpose data reduction, analysis and visualization program[J]. J. Appl. Crystallogr., 2016, 49(2):646-652.
|
[22] |
王维, 陈兴, 蔡泉, 等. 小角X射线散射(SAXS)数据分析程序SAXS1.0[J]. 核技术, 2007, 30(7):571-575. WANG W, CHEN X, CAI Q, et al. SAXS1.0-a program for small-angle X-ray scattering data analysis[J]. Nucl. Sci. Tech., 2007, 30(7):571-575.
|
[23] |
LI Z H. A program for SAXS data processing and analysis[J]. Chin. Phys. C, 2013, 37(10):110-115.
|
[24] |
孟昭富. 小角X射线散射理论及应用[M]. 长春:吉林科学出版社, 1996:4-28. MENG Z F. Theory and Application of Small Angle X-Ray Scattering[M]. Changchun:Jilin Science and Technical Press, 1996:4-28.
|
[25] |
PAUW B R, PEDERSEN J S, TARDIF S, et al. Improvements and considerations for size distribution retrieval from small-angle scattering data by Monte Carlo methods[J]. J. Appl. Crystallogr., 2012, 46(2):365-371.
|
[26] |
BRESSLER I, PAUW B R, THÜNEMANN A F. McSAS:software for the retrieval of model parameter distributions from scattering patterns[J]. J. Appl. Crystallogr., 2015, 48(3):962-969.
|
[27] |
ZHAO X M, LIU R G, ZHANG H, et al. Structure evolution of aluminosilicate sol and its structure-directing effect on the synthesis of NaY zeolite[J]. J. Appl. Crystallogr., 2017, 50:231-239.
|
[28] |
KEEFER K D, SCHAEFER D W. Growth of fractally rough colloids[J]. Phys. Rev. Lett., 1986, 56(22):2376-2379.
|
[29] |
EDLER K J, WHITE J W. Preparation dependent stability of pure silica MCM-41[J]. J. Mater. Chem., 1999, 9(10):2611-2615.
|
[30] |
XU Y N, KOGA Y, STRAUSZ O P. Characterization of athabasca asphaltenes by small-angle X-ray scattering[J]. Fuel, 1995, 74(7):960-964.
|
[31] |
GLATTER O, KRATKY O. Small Angle X-Ray Scattering[M]. New York:Academic Press, 1982:167-179.
|