[1] |
LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288.
|
[2] |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1):19-29.
|
[3] |
杨蓉, 王黎晴, 吕梦妮, 等. 锂硫电池石墨烯/纳米硫复合正极材料的制备及电化学性能[J]. 化工学报, 2016, 67(10):4363-4369. YANG R, WANG L Q, LÜ M N, et al. Preparation and electrochemical properties of graphene/nano-sulfur composite as cathode materials for lithium-sulfur batteries[J]. CIESC Journal, 2016, 67(10):4363-4369.
|
[4] |
JI X, NAZAR L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44):9821-9826.
|
[5] |
ZHANG J, XIANG J, DONG Z, et al. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries[J]. Electrochimica Acta, 2014, 116(2):146-151.
|
[6] |
JEDDI K, GHAZNAVI M, CHEN P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(8):2769-2772.
|
[7] |
胡素琴, 杨改, 蔡飞鹏, 等. 离子液体基锂离子电池电解液的应用与性能改进[J]. 化工学报, 2011, 62(S2):1-6. HU S Q, YANG G, CAI F P, et al. Application of ionic liquids-based Li-ion battery electrolyte and improvement of electrochemical properties[J]. CIESC Journal, 2011, 62(S2):1-6.
|
[8] |
LEE J H, LEE H Y, OH S M, et al. Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2007, 166(1):250-254.
|
[9] |
JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur, cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6):500-506.
|
[10] |
XU G L, XU Y F, FANG J C, et al. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(21):10782-10793.
|
[11] |
HE G, EVERS S, LIANG X, et al. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes.[J]. ACS Nano, 2013, 7(12):10920-10930.
|
[12] |
ZHENG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2015, 11(10):4462-4467.
|
[13] |
ZHENG G, ZHANG Q, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3):1265-1270.
|
[14] |
DING B, YUAN C, SHEN L, et al. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2012, 1(4):1096-1101.
|
[15] |
ZHANG B, QIN X, LI G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10):1531-1537.
|
[16] |
DING J, WANG H, LI Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy & Environmental Science, 2015, 8(3):941-955.
|
[17] |
HOU J, CAO C, IDREES F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano, 2015, 9(3):2556-2564.
|
[18] |
CHUNG S H, MANTHIRAM A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells[J]. Chemsuschem, 2014, 7(6):1655-1661.
|
[19] |
LIU M, CHEN Y, CHEN K, et al. Biomass-derived activated carbon for rechargeable lithium-sulfur batteries[J]. Bioresources, 2014, 10(1):155-168.
|
[20] |
FUERTES A B, SEVILLA M. High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors[J]. Carbon, 2015, 94:41-52.
|
[21] |
WEI S, ZHANG H, HUANG Y, et al. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries[J]. Energy & Environmental Science, 2011, 4(3):736-740.
|
[22] |
WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45):23710-23725.
|
[23] |
GUO B, WANG X, FULVIO P F, et al. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries[J]. Advanced Materials. 2011, 23(40):4661-4666.
|
[24] |
LI D, ZHANG L, CHEN H, et al. Nitrogen-doped bamboo-like carbon nanotubes:promising anode materials for sodium-ion batteries[J]. Chemical Communications, 2015, 51(89):16045-16048.
|
[25] |
ZHANG W, QIAO D, PAN J, et al. A Li+-conductive microporous carbon-sulfur composite for Li-S batteries[J]. Electrochimica Acta, 2013, 87(1):497-502.
|
[26] |
ZHOU G, PEI S, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4):625-631.
|
[27] |
RYU H S, GUO Z, AHN H J, et al. Investigation of discharge reaction mechanism of lithium liquid electrolyte sulfur battery[J]. Journal of Power Sources, 2009, 189(189):1179-1183.
|
[28] |
KOLOSNITSYN V S, KUZMINA E V, KARASEVA E V, et al. A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy[J]. Journal of Power Sources, 2011, 196(3):1478-1482.
|
[29] |
LIU J, LIU W, CHEN K F, et al. Facile synthesis of transition-metal oxide nanocrystals embedded in hollow carbon microspheres for high-rate lithium-ion-battery anodes[J]. Chemistry, 2013, 19(30):9811-9816.
|
[30] |
YUAN L, QIU X, CHEN L, et al. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2009, 189(1):127-132.
|