[1] |
高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京:化学工业出版社, 2010. GAO J S. The Coal Pyrolysis, Coke and Coal Tar Processing[M]. Beijing:Chemical Industry Press, 2001.
|
[2] |
王向辉, 门卓武, 许明, 等. 低阶煤粉煤热解提质技术研究现状及发展建议[J]. 洁煤技术, 2014, 20(6):36-41. WANG X H, MEN Z W, XU M, et al. Research status and development proposals on pyrolysis techniques of low rank pulverized coal[J]. Clean Coal Technology, 2014, 20(6):36-41.
|
[3] |
岑建孟, 方梦祥, 王勤辉, 等. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2011, 30(1):88-94. CEN J M, FANG M X, WANG Q H, et al. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1):88-94.
|
[4] |
QU X, LIANG P, WANG Z, et al. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chemical Engineering & Technology, 2011, 34(1):61-68.
|
[5] |
LI C, SUZUKI K. Resources, properties and utilization of tar[J]. Resources, Conservation and Recycling, 2010, 54(11):905-915.
|
[6] |
WANG J, LU X, YAO J, et al. Experimental study of coal yopping process in a downer reactor[J]. Industrial & Engineering Chemistry Research, 2005, 44(3):463-470.
|
[7] |
LIANG P, WANG Z, BI J. Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis[J]. Fuel Processing Technology, 2007, 88(1):23-28.
|
[8] |
HAN J Z, WANG X D, YUE J R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122:98-106.
|
[9] |
艾馨鹏, 岳宝华, 汪学广, 等. Ni/MgO-Al2O3催化剂上高温焦油组分的催化转化[J]. 物理化学学报, 2009, 25(8):1517-1522. AI X P, YUE B H, WANG X G, et al. Catalytic conversion of tar components in hot coke oven gas over Ni/MgO-Al2O3 catalysts[J]. Acta Phys. Chim. Sin., 2009, 25(8):1517-1522.
|
[10] |
LI L Y, KAYOKO M, HARUTO M, et al. Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char[J]. Fuel Processing Technology, 2010, 91:889-894.
|
[11] |
LI L, MORISHITA K, TAKARADA T. Conversion of hot coke oven gas into light fuel gas over Ni/Al2O3 catalyst[J]. J. Chem. Eng. Jpn., 2006, 39:461-468.
|
[12] |
METTA C, TIPPANAKARIN B, JUMRAS L. Production of aromatic hydrocarbons from Mae-Moh lignite[J]. Fuel Processing Technology, 2002, 79:171-179.
|
[13] |
HAN J, LIU X, YUE J, et al. Catalytic upgrading of in situ coal pyrolysis tar over Ni-char catalyst with different additives[J]. Energy & Fuels, 2014, 28(8):4934-4941.
|
[14] |
ZHANG J, HUI W, DALAI A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane[J]. Journal of Catalysis, 2007, 249(2):300-310.
|
[15] |
KEⅡCHI T, TAKEO K, JIN N, et al. Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass[J]. Catalysis Communications, 2007, 8:1074-1079.
|
[16] |
YUAN H K, MA X H, XU Z L. Pore structure analysis of PFSA/SiO2 composite catalysts from nitrogen adsorption isotherms[J]. Science China Chemistry, 2011, 54(1):257-262.
|
[17] |
莫文龙, 马凤云, 刘月娥, 等. 制备方法对Ni-Al2O3催化剂在CO2-CH4重整反应中催化性能的影响[J]. 燃料化学学报, 2015, 43(9):1083-1091. MO W L, MA F Y, LIU Y E, et al. Effect of preparation methods on the catalytic performance of Ni-Al2O3 for CO2-CH4 reforming[J]. Journal of Fuel Chemistry and Technology, 2015, 43(9):1083-1091.
|
[18] |
莫文龙, 马凤云, 郝世豪, 等. 介孔Al2O3的制备及其在CO2-CH4重整镍基催化剂中的应用研究[J]. 天然气化工, 2014, 39(5):16-21. MO W L, MA F Y, HAO S H, et al. Preparation of ordered mesoporous Al2O3 and its application in Ni-based catalysts for CH4/CO2 reforming[J]. Natural Gas Chemical Industry, 2014, 39:16-21.
|
[19] |
孟凡会, 刘军, 李忠, 等. Ce含量对Ni-Ce/Al2O3催化剂结构及浆态床CO甲烷化性能的影响[J]. 燃料化学学报, 2014, 42(2):231-237. MENG F H, LIU J, LI Z, et al. Effect of Ce content of Ni-Ce/Al2O3 catalyst on structure and CO methanation in slurry-bed reactor[J]. Fuel Chemistry and Technology, 2014, 42(2):231-237.
|
[20] |
ASHOK J, KAWI S. Steam reforming of toluene as a biomass tar model compound over CeO2, promoted Ni/CaO-Al2O3, catalytic systems[J]. International Journal of Hydrogen Energy, 2013, 38(32):13938-13949.
|
[21] |
ZHANG R Q, WANG Y C, ROBERT C. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2[J]. Energy Conversion and Management, 2007, 48:68-77.
|
[22] |
MO W L, MA F Y, LIU Y E, et al. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int. J. Hydrogen Energy, 2015, 40:16147-16158.
|
[23] |
张大洲, 李秀杰, 刘盛林, 等. 载体酸性对Mo/HZSM-5-Al2O3催化剂上烯烃歧化反应性能的影响[J]. 催化学报, 2011, 11:1747-1754. ZHANG D Z, LI X J, LIU S L, et al. Effects of support acidity on the catalytic performance of Mo/HZSM-5-Al2O3 catalysts in olefin metathesis[J]. Chinese Journal of Catalysis, 2011, 11:1747-1754.
|
[24] |
MARAFI A, STAINSLAUS A, HAUSER A, et al. An investigation of the deactivation behavior of industrial Mo/Al2O3 and Ni-Mo/Al2O3 catalysts in hydrotreating Kuwait atmospheric residue[J]. Petroleum Science & Technology, 2005, 23(3/4):385-408.
|
[25] |
LIU H, ZHANG L, LI X, et al. Production of propene from 1-butene metathesis reaction on tungsten based heterogeneous catalysts[J]. Energy Chemistry, 2009, 18(3):331-336.
|
[26] |
YU F, YUE B, WANG X, et al. Hydrocracking of tar components from hot cole oven gas over a Ni/Ce-ZrO2/gamma-Al2O3 catalyst at atmospheric pressure[J]. 2009, 30(7):690-696.
|
[27] |
LI L, FAN H J, HU H Q. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153:70-77.
|
[28] |
ZHANG T C, ZHANG L D, FAN H J, et al. An experimental and theoretical study of toluene with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry[J]. Combustion and Flame, 2009, 153:2071-2083.
|
[29] |
陈广辉, 李玉, 张长森, 等. CeO2对Ni-Cu/HZSM-5催化剂在生物油加氢脱氧反应中抗积炭性能的影响[J]. 燃料化学学报, 2017, (4):449-457. CHEN G H, LI Y, ZHANG C S, et al. Influence of CeO2 on the carbonaceous deposition behavior of Ni-Cu/HZSM-5 catalyst in the hydrodeoxygenation of bio-oil[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4):449-457
|
[30] |
VOGELAAR B M, LANGEVELD A D V, EIJSBOUTS S, et al. Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy[J]. Fuel, 2007, 86(7/8):1122-1129.
|