CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 99-109.DOI: 10.11949/j.issn.0438-1157.20181224
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Fanrui MENG1(),Boyang LI1,Xianchun LI1,2(),Shuang QIU2
Received:
2018-10-18
Revised:
2018-11-23
Online:
2019-03-31
Published:
2019-03-31
Contact:
Xianchun LI
通讯作者:
李先春
作者简介:
<named-content content-type="corresp-name">孟繁锐</named-content>(1987—),女,博士,讲师,<email>mengfanrui1025@163.com</email>|李先春(1972—),男,博士,教授,<email>askd1972@163.com</email>
基金资助:
CLC Number:
Fanrui MENG, Boyang LI, Xianchun LI, Shuang QIU. Catalysis effects of K2CO3 for gasification of semi-coke[J]. CIESC Journal, 2019, 70(S1): 99-109.
孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181224
Sample | Proximate analysis/% | Ultimate analysis /% | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cd | Hd | Nd | Sd | |
semi-coke | 3.64 | 18.66 | 5.63 | 72.07 | 79.78 | 1.44 | 0.85 | 0.11 |
Table 1 Proximate and ultimate analysis of semi-coke coal
Sample | Proximate analysis/% | Ultimate analysis /% | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cd | Hd | Nd | Sd | |
semi-coke | 3.64 | 18.66 | 5.63 | 72.07 | 79.78 | 1.44 | 0.85 | 0.11 |
Sample, K2CO3/% | Surface area /(m2/g) | Micropore area /(m2/g) | External surface area /(m2/g) | Pore volume/(ml/g) |
---|---|---|---|---|
0 | 17.76 | 5.71 | 12.05 | 0.004 |
5 | 1.57 | 0 | 1.57 | 0.002 |
10 | 2.51 | 0.13 | 2.38 | 0.002 |
15 | 5.95 | 1.55 | 4.40 | 0.002 |
0-ash | 598.13 | 398.44 | 199.70 | 0.148 |
5-ash | 338.97 | 269.89 | 69.08 | 0.035 |
10-ash | 189.57 | 163.39 | 26.18 | 0.009 |
15-ash | 52.60 | 43.10 | 9.50 | 0.004 |
Table 2 Specific surface area and pore volume of K2CO3/semi-coke at different loading and residual coke
Sample, K2CO3/% | Surface area /(m2/g) | Micropore area /(m2/g) | External surface area /(m2/g) | Pore volume/(ml/g) |
---|---|---|---|---|
0 | 17.76 | 5.71 | 12.05 | 0.004 |
5 | 1.57 | 0 | 1.57 | 0.002 |
10 | 2.51 | 0.13 | 2.38 | 0.002 |
15 | 5.95 | 1.55 | 4.40 | 0.002 |
0-ash | 598.13 | 398.44 | 199.70 | 0.148 |
5-ash | 338.97 | 269.89 | 69.08 | 0.035 |
10-ash | 189.57 | 163.39 | 26.18 | 0.009 |
15-ash | 52.60 | 43.10 | 9.50 | 0.004 |
Sample, K2CO3/% | 10 min | 20 min | 30 min | 40 min | 50 min | |||||
---|---|---|---|---|---|---|---|---|---|---|
CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | |
0 | 2.13 | 1.06 | 1.22 | 1.86 | 1.20 | 2.36 | 0.66 | 2.23 | 0.46 | 2.05 |
5 | 0.63 | 0.90 | 1.38 | 2.02 | 1.00 | 1.40 | 0.95 | 1.57 | 1.61 | 1.56 |
10 | 4.18 | 1.95 | 0.95 | 0.91 | 0.84 | 1.65 | 1.11 | 1.56 | 0.58 | 1.52 |
15 | 6.02 | 1.66 | 1.54 | 1.58 | 0.56 | 1.51 | 0.71 | 1.52 | 0.65 | 1.63 |
Table 3 Changes of CO/CO2 and H2/(2CO2+CO) at different catalyst loading during gasification
Sample, K2CO3/% | 10 min | 20 min | 30 min | 40 min | 50 min | |||||
---|---|---|---|---|---|---|---|---|---|---|
CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | CO/CO2 | H2/(2CO2+CO) | |
0 | 2.13 | 1.06 | 1.22 | 1.86 | 1.20 | 2.36 | 0.66 | 2.23 | 0.46 | 2.05 |
5 | 0.63 | 0.90 | 1.38 | 2.02 | 1.00 | 1.40 | 0.95 | 1.57 | 1.61 | 1.56 |
10 | 4.18 | 1.95 | 0.95 | 0.91 | 0.84 | 1.65 | 1.11 | 1.56 | 0.58 | 1.52 |
15 | 6.02 | 1.66 | 1.54 | 1.58 | 0.56 | 1.51 | 0.71 | 1.52 | 0.65 | 1.63 |
1 | 汪寿建. 兰炭固定床连续气化制备清洁燃料气的应用与实践[J]. 化肥设计, 2017, 55(5): 5-10. |
WangS J. Application and practice of continous preparation of clean fuel gas though coal gasification in semi-coke fixed bed[J]. Chemical Fertilizer Design, 2017, 55(5): 5-10. | |
2 | SharmaA, TakanohashiT, SaitoI, et al. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 775—700℃[J]. Fuel, 2008, 87(12): 2686-2690. |
3 | ZhangF, XuD, WangY, et al. Catalytic CO2 gasification of a Powder River Basin coal[J]. Fuel, 2013, 103(130): 161-170. |
4 | McKeeD W, SpiroC L, KoskyP G, et al. Catalysis of coal char gasification by alkali metal salts [J]. Fuel, 1983, 62(2): 217-220. |
5 | AkyurtluJ F, AkyurtluA. Catalytic gasification of Pittsburgh coal char by potassium sulphate and ferrous sulphate mixtures[J]. Fuel Processing Technology, 1988, 43(1): 71-86. |
6 | SongB H, YongW J, YunS B, et al. Steam gasification of a bituminous char catalyzed by a salt mixture of potassium sulfate and nikel nitrate[J]. Korean Chemical Engineering Research, 2003, 41(3): 349-356. |
7 | MurakamiK, SatoM, TsubouchiN, et al. Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material[J]. Fuel Processing Technology, 2015, 129(129): 91-97. |
8 | WoodB , SancierK. The mechanism of the catalytic gasification of coal char: a critical review[J]. Catalysis Reviews, 1984, 26(2): 233-279. |
9 | KapteijnF, MoulijnJ A. Kinetics of the CO2 gasification of activated carbon[J]. Fuel, 1983, 62(2): 221-225. |
10 | 陈彦, 张济宇.福建无烟煤Na2CO3催化气化过程的比表面变化特性[J].化工学报, 2012, 63(8): 2443-2452. |
ChenY, ZhangJ Y. Variation of specific surface area in catalytic gasification process of Fujian anthracite with Na2CO3 catalyst[J]. CIESC Journal, 2012, 63(8): 2443-2452. | |
11 | KarimiA, GrayM R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011, 90(1): 120-125. |
12 | 陈彦, 张济宇. Na2CO3催化剂对福建高变质无烟煤比表面及气化反应特性的影响[J]. 化工学报,2011, 62(10): 2768-2775. |
ChenY, ZhangJ Y. Effects of catalyst loading of Na2CO3 on specific surface area and gasification characteristics of Fujian high-metamorphous anthracite[J]. CIESC Journal, 2011, 62(10): 2768-2775. | |
13 | HurtR H, SarofimA F, LongwellJ P. The role of microporous surface area in the gasification of chars from a sub-bituminous coal[J]. Fuel, 1991, 70(9): 1079-1082. |
14 | YokoyamaS Y, TanakaK I, ToyoshimaI, et al. X-ray photoelectron spectroscopic study of the surface of carbon doped with potassium carbonate[J]. Chemistry Letters, 1980, 16(5): 599-602. |
15 | KopyscinskiJ, RahmanM, GuptaR, et al. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014, 117(1): 1181-1189. |
16 | WangY, WangZ, HuangJ, et al. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy & Fuels, 2015, 29(11): 6988-6998. |
17 | WangJ, JiangM, YaoY, et al. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel, 2009, 88(9): 1572-1579. |
18 | ChenS G, YangR T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy & Fuels, 1997, 11(2): 421-427. |
19 | XuK, HuS, SuS, et al. Study on char surface active sites and their relationship to gasification reactivity[J]. Energy & Fuels, 2013, 27(1): 118-125. |
20 | CerfontainM B, MoulijnJ A. Alkali-catalysed gasification reactions studied by in situ FTIR spectroscopy[J]. Fuel, 1983, 62(2): 256-258. |
21 | ZhangF, XuD, WangY, et al. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Applied Energy, 2015, 145: 295-305. |
22 | SamsD A, ShadmanF. Catalytic effect of potassium on the rate of char-CO2 gasification[J]. Fuel, 1983, 62(8): 880-882. |
23 | SaberJ M, KesterK B, FalconerJ L, et al. A mechanism for sodium oxide catalyzed CO2 gasification of carbon[J]. Journal of Catalysis, 1988, 109(2): 329-346. |
24 | WigmansT, ElfringM, MoulijnJ A, et al. On the mechanism of the potassium catalysed gasification of activated carbon: differences in physical behaviour of sodium- and potassium-carbonate[J]. Carbon, 1982, 20(2): 140. |
25 | MoulijnJ A, KapteijnF. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165. |
26 | TahmasebiA, YuJ, HanY, et al. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air[J]. Fuel Process. Technol., 2012, 101: 85-93. |
27 | IbarraJ, MuñozE, MolinerR, et al. FTIR study of the evolution of coal structure during the coalification process[J]. Org. Geochem., 1996, 24(6/7): 725-735. |
28 | ShangJ Y, WolfE E. FTIR studies of potassium catalyst-treated gasified coal chars and carbons[J]. Fuel, 1983, 62(2): 252-255. |
29 | XieA J, ShenY H, LiX Y, et al. The role of Mg2+ and Mg2+ /amino acid in controlling polymorph and morphology of calcium carbonate crystal[J]. Materials Chemistry & Physics, 2007, 101(1): 87-92. |
30 | RamasamyV, RajkumarP, PonnusamyV, et al. Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies[J]. Indian Journal of Physics, 2009, 83(9): 1295-1308. |
31 | MakreskiP, JovanovskiG, DimitrovskaS, et al. Minerals from Macedonia (): Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy[J]. Vibrational Spectroscopy, 2005, 39(2): 229-239. |
32 | WangJ, DuJ, ChangL, et al. Study on the structure and pyrolysis characteristics of Chinese western coals[J]. Fuel Process. Technol., 2010, 91(4): 430-433. |
33 | PereiraP, CsencsitsR, SomorjaiG A, et al. Steam gasification of graphite and chars at temperatures <1000 K over potassium-calcium-oxide catalysts[J]. Journal of Catalysis, 1989, 123(2): 463-476. |
34 | PereiraP, SomorjaiG A, HeinemannH, et al. Catalytic steam gasification of coals[J]. Energy & Fuels, 1992, 6(4): 407-410. |
35 | JiangM Q, ZhouR, HuJ, et al. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: influences of calcium species[J]. Fuel, 2012, 99(9): 64-71. |
36 | BrunoG, BuroniM, CarvaniL, et al. Water-insoluble compounds formed by reaction between potassium and mineral matter in catalytic coal gasification[J]. Fuel, 1988, 67(1): 67-72. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||