[1] |
ALAHMAD M. Factors affecting scale formation in sea water environments an experimental approach[J]. Chemical Engineering & Technology,2008,31(1):149-156.
|
[2] |
BENJAMIN T B,ELLIS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries[J]. Philosophical Transactions of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1966,260:221-240.
|
[3] |
PE A?G NIK B,HO A?G EVAR M,ŠIROK B,et al. Scale deposit removal by means of ultrasonic cavitation[J]. Wear,2016,356:45-52.
|
[4] |
WALLHAUBER E,SAYED A,NOBEL S,et al. Determination of cleaning end of dairy protein fouling using an online system combining ultrasonic and classification methods[J]. Food and Bioprocess Technology,2014,7(2):506-515.
|
[5] |
PAAKKONEN T M,OJANIEMI U,PATTIKANGAS T,et al. CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces[J]. International Journal of Heat and Mass Transfer,2016,97:618-630.
|
[6] |
MAZUE G,VIENNET R,HIHN J Y,et al. Large-scale ultrasonic cleaning system:design of multi-transducer device for boat cleaning (20 kHz)[J]. Ultrasonics Sonochemistry,2011,18(4):895-900.
|
[7] |
QIU L,SHI L,LIU Z,et al. Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate[J]. Ultrasonics Sonochemistry,2017,36:123.
|
[8] |
ZHANG L,ZHOU C,WANG B,et al. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies[J]. Ultrasonics Sonochemistry,2017,37:106-113.
|
[9] |
KRASULYA O,BOGUSH V,TRISHINA V,et al. Impact of acoustic cavitation on food emulsions[J]. Ultrasonics Sonochemistry,2016,30:98-102.
|
[10] |
DOOSTI M R,KARGAR R. Watertreatment using ultrasonic assistance:a review[C]//Proceedings of the International Academy of Ecology and Environmental Sciences. 2012:96-110.
|
[11] |
YUSOF N S,BABGI B,ALGHAMDI Y,et al. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.[J]. Ultrasonics Sonochemistry,2015,29:568.
|
[12] |
XU H,TU J,NIU F,et al. Cavitation dose in an ultrasonic cleaner and its dependence on experimental parameters[J]. Applied Acoustics,2016,(101):179-184.
|
[13] |
BOGDAN N. Cavitation intensity of water under practical ultrasonic cleaning conditions[J]. Ultrasonics Sonochemistry,2014,(21):354-359.
|
[14] |
张艾萍,杨钊,夏荣涛,等.强化换热管内超声空化影响因素的数值研究[J].化工机械,2016,(2):208-213. ZHANG A P,YANG Z,XIA R T,et al. Numerical simulation of ultrasonic cavitation influence factors in enhanced heart transfer tube[J]. Chemical Engineering Machinery,2016,(2):208-213.
|
[15] |
张艾萍,杨洋. 超声波防垢和除垢技术的应用及其空化效应机理[J]. 黑龙江电力,2010,32(5):321-324. ZHANG A P,YANG Y. Application of ultrasonic antiscaling and descaling and its cavitation effect mechanism[J]. Heilongjiang Electric Power,2010,32(5):321-324.
|
[16] |
陶文铨. 数值传热学[M]. 西安:西安交通大学出版社,2001:19-25. TAO W Q. Numerical Heat Transfer[M]. Xi'an:Xi'an Jiaotong University Press,2001:19-25.
|
[17] |
徐志明,张一龙,徐欣. 温度及浓度对析晶污垢沉积特性影响的模拟研究[J]. 中国电机工程学报,2014,34(35):6263-6270. XU Z M,ZHANG Y L,XU X. Simulation study on influential of temperature and concentration on crystallization fouling deposition[J]. Proceedings of the CSEE,2014,34(35):6263-6270.
|
[18] |
BRAHIM F,AUGUSTIN W,BOHNET M. Numerical simulation of the fouling process[J]. International Journal of Thermal Sciences,2003,42(3):323-334.
|
[19] |
KRAUSE S. Fouling of heat-transfer surfaces by cryst-allization and sedimentation[J]. International Chemical Engineering (A Quarterly Journal of Translations from Russia,Eastern Europe and Asia)(United States),1993,33(3):355-401.
|
[20] |
杨善让,徐志明,孙灵芳. 换热设备污垢与对策[M]. 北京:科学出版社,2004:1-20. YANG S R,XU Z M,SUN L F. Fouling and Countermeasures for Heat Transfer Equipment[M]. Beijing:Scientific Press,2004:1-20.
|
[21] |
孙晓清,符卫春,张明铎.直管中流体流速对超声波防垢效果的影响[J].声学技术,2010,(6):600-602. SUN X Q,FU W C,ZHANG M D. Experimental study of flow rate effect on ultrasonic anti-scaling control[J].Technical Acoustic,2010,(6):600-602.
|