[1] |
AKACHI H. Structure of a hear pipe:US4921041[P]. 1990-05-01.
|
[2] |
杨蔚原,张正芳,马同泽. 回路型脉动热管的运行与传热[J]. 上海交通大学学报,2003,37(9):1398-1401. YANG W Y,ZHANG Z F,MA T Z. Operation and heat transfer of the pulsating heat pipe of the loop type[J]. Journal of Shanghai Jiao Tong University,2003,37(9):1398-1401.
|
[3] |
曲伟,马同泽. 脉动热管的工质流动和传热特性实验研究[J]. 工程热物理学报,2002,23(5):596-598. QU W,MA T Z. Experimental study on fluid flow and heat transfer characteristics of pulsating heat pipe[J]. Journal of Engineering Thermophysics,2002,23(5):596-598.
|
[4] |
张显明,徐进良,施慧烈. 倾斜角度及加热方式对脉冲热管传热性能的影响[J]. 中国电机工程学报,2004,24(11):222-227. ZHANG X M,XU J L,SHI H L. Effect of tilt angle and heating mode on heat transfer performance of pulsating heat pipe[J]. Proceeding of the CSEE,2004,24(11):222-227.
|
[5] |
王伟. 脉动热管的传热性能和启动特性[D]. 长沙:中南大学,2007. WANG W. Heat transfer performance and starting characteristics of an pulsating heat pipe[D]. Changsha:Central South University,2007.
|
[6] |
LIU T Y,LIP L,LIU C W,et al. Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface[J]. International Journal of Heat and Mass Transfer,2011,54(1):126-134.
|
[7] |
PHAN H T,CANEY N,MARTY P,et al. Surface wettability control by nanocoating:the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer,2009,52(23):5459-5471.
|
[8] |
CHOI C,SHIN J S,YU D I, et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels[J]. Experimental Thermal and Fluid Science,2011,35(5):816-824.
|
[9] |
郑晓欢,纪献兵,王野,等. 超亲/疏水性表面池沸腾传热研究[J]. 化工进展,2016,35(12):3793-3798. ZHENG X H,JI X B,WANG Y, et al. Study on boiling heat transfer of super-hydrophilic/hydrophobic surface[J]. Progress in Chemical Industry,2016,35(12):3793-3798.
|
[10] |
PHAN H T,CANEY N,MARTY P,et al. How does surface wettability influence nucleate boiling?[J]. Comptes Rendus Mécanique,2009,337(5):251-259.
|
[11] |
KANDLIKAR S G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. Transactions-American Society of Mechanical Engineers Journal of Heat Transfer,2001,123(6):1071-1079.
|
[12] |
CHU K H,SOO J Y,ENRIGHT R,et al. Hierarchically structured surfaces for boiling critical heat flux enhancement[J]. Applied Physics Letters,2013,102(15):151602.
|
[13] |
AHN H S,JO H J,KANG S H,et al. Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling[J]. Applied Physics Letters,2011,98(7):071908.
|
[14] |
CHEN R,LU M C,SRINIVASAN V,et al. Nanowires for enhanced boiling heat transfer[J]. Nano Letters,2009,9(2):548-553.
|
[15] |
QU W,MA H B. Theoretical analysis of startup of a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer,2007,50(11):2309-2316.
|
[16] |
JI Y,XU C,MA H,et al. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface[J]. Journal of Heat Transfer,2013,135(7):074504.
|
[17] |
DOBSON R T,SWANEPOEL G. An experimental investigation of the thickness of the liquid-film deposited at the trailing end of a liquid plug moving in the capillary tube of a pulsating heat pipe[J]. Frontiers in Heat Pipes (FHP),2010,http://dx.doi.org/10.5098/fhp.v1.1.3004.
|
[18] |
HAO T,MA X,LAN Z, et al. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. International Journal of Heat and Mass Transfer,2014,72:50-65.
|
[19] |
郝婷婷,马学虎,兰忠,等. 超亲水脉动热管液弹液膜沉积的实验研究[J]. 工程热物理学报,2015,36(1):168-171. HAO T T,MA X H,LAN Z,et al. Experimental investigation of the effect of superhydrophilic surface on the liquid film deposition of a pulsating heat pipe[J]. Journal of Engineering Thermophysics,2015,36(1):168-171.
|
[20] |
JI Y,CHEN H,KIM Y J,et al. Hydrophobic surface effect on heat transfer performance in an oscillating heat pipe[J]. Journal of Heat Transfer,2012,134(7):074502.
|
[21] |
HAO T T,MA X H,ZHONG L,et al. Effects of hydrophobic surface on heat transfer performance and oscillating motion for a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer,2014,72(1):50-65.
|
[22] |
ZHU X,WANG H,LIAO Q,et al. Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces[J]. Experimental Thermal and Fluid Science,2009,33(6):947-954.
|
[23] |
CHANDESRIS B,SOUPREMANIEN U,DUNOYER N. Uphill motion of droplets on tilted and vertical grooved substrates induced by a wettability gradient[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,434:126-135.
|
[24] |
LAIBINIS P E,WHITESIDES G M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air[J]. Journal of the American Chemical Society,1992,114(23):9022-9028.
|
[25] |
YU X,WANG Z,JIANG Y,et al. Surface gradient material:from superhydrophobicity to superhydrophilicity[J]. Langmuir,2006,22(10):4483-4486.
|
[26] |
ITO Y,HEYDARI M,HASHIMOTO A,et al. The movement of a water droplet on a gradient surface prepared by photodegradation[J]. Langmuir,2007,23(4):1845-1850.
|
[27] |
SUN C,ZHAO X W,HAN Y H,et al. Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment[J]. Thin Solid Films,2008,516(12):4059-4063.
|
[28] |
WANG L,PENG B,SU Z. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity[J]. Langmuir,2010,26(14):12203-12208.
|
[29] |
LI X,DAI H,TAN S,et al. Facile preparation of poly (ethyl α-cyanoacrylate) superhydrophobic and gradient wetting surfaces[J]. Journal of Colloid and Interface Science,2009,340(1):93-97.
|
[30] |
HUANG Z,ZHANG J,CHENG J,et al. Preparation and characterization of gradient wettability surface depending on controlling Cu(OH)2 nanoribbon arrays growth on copper substrate[J]. Applied Surface Science,2012,259:142-146.
|