[1] |
WANG Z L, XU D, WANG L M, et al. Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range[J]. ChemPlusChem, 2012, 77(2):124-128.
|
[2] |
PANG Q, WU H B, ZHANG L, et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energ. Environ. Sci., 2013, 6(5):1476-1479.
|
[3] |
WU H B, PAN A Q, HNG H H, et al. Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties[J]. Adv. Funct. Mater., 2013, 23(45):5669-5674.
|
[4] |
KANG K S, MENG Y S, BREGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763):977-980.
|
[5] |
CHOI N S, CHEN Z, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(40):9994-10024.
|
[6] |
GOODENOUGH J B, PARK S. The Li-ion rechargeable battery:a perspective[J]. J. Am. Chem. Soc., 2013, 135(4):1167-1176.
|
[7] |
POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407:496-499.
|
[8] |
WU C, XIE Y. Promising vanadium oxide and hydroxide nanostructures:from energy storage to energy saving[J]. Energy & Environmental Science, 2010, 3(9):1191-1206.
|
[9] |
MAO L, LIU C, A new route for synthesizing VO2(B) nanoribbons and 1D vanadiumbased nanostructures[J]. Mater. Res. Bull., 2008, 43(6):1384-1392.
|
[10] |
DING N, FENG X Y, LIU S H, et al. High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications[J]. Electrochemistry Communications, 2009, 11(3):538-541.
|
[11] |
LI H, HE P, WANG Y, HOSONO E, et al. High-surface vanadium oxides with large capacities for lithium-ion batteries:from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5[J]. J. Mater. Chem., 2011, 21(29):10999-11009.
|
[12] |
CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides:batteries and electrochromics[J]. J. Mater. Chem., 2009, 19:2526-2552.
|
[13] |
MAI L, XU L, HAN C, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano Letters, 2010, 10(11):4750.
|
[14] |
MECHTHILD L, NING D, MICHAEL J P, et al. VO2 nano-sheet negative electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2016, 64:56-60.
|
[15] |
HE G, LI L, MANTHIRAM A. VO2/rGO nanorods as a potential anode for sodium-and lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:14750-14758.
|
[16] |
ZHAO Q Q, JIAO L F, PENG W X, et al. Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability[J]. J. Power Sources, 2012, 199:350-354.
|
[17] |
ZOU Z G, HOU Z L, WANG J L, et al. Hydrothermal synthesis and electrochemical performance of Al-doped VO2(B) as cathode materials for lithium-ion battery[J]. Int. J. Electrochem. Sci., 2017, 12:4979-4989.
|
[18] |
YANG S B, GONG Y J, LIU Z, et al. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage[J]. Nano Lett., 2013, 13(4):1596-1601.
|
[19] |
张磊, 樊勇利, 于文志. 金属离子掺杂及碳包覆改善LiFePO4电化学性能[J].电源技术, 2008, 32(10):659-662. ZHANG L, FAN Y L, YU W Z. Improvement of LiFePO4 electrochemical performance by doping metalion and coating carbon[J]. Chinese Journal of Power Sources, 2008, 32(10):659-662.
|
[20] |
章明, 焦丽芳, 袁华堂, 等. MoO3氧化物掺杂改善LiFePO4/乙炔黑电化学性能研究[J]. 无机化学学报, 2006, 22(5):839-844. ZHANG M, JIAO L H, YUAN H T, et al. Research of LiFePO4/acetylene electrochemical performance by doping MoO3[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(5):839-844.
|
[21] |
WANG D, LI H, SHI S, et al. Improving the rate performance of LiFePO4by Fe-site doping[J]. Electrochimica Acta, 2005, 50(14):2955-2958.
|
[22] |
MOLENDA J, STOKOSA A, BK T. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties[J]. Solid State Ionics, 1989, 36 (1):53-58.
|
[23] |
曹伟红, 徐本杰, 徐浚. X射线衍射法测定结晶度的方法研究[J]. 浙江大学学报, 1984, (3):55-64. CAO W H, XU B J, XU J. Study on the method of determining crystallinity by X-ray diffraction method[J]. Journal of Zhejiang University, 1984, (3):55-64.
|
[24] |
ROZIER P, GALY J. Ag1.2V3O8 crystal structure:relationship with Ag2V4O11-y and interpretation of physical properties[J]. Journal of Solid State Chemistry, 1997, 134(2):294-301.
|
[25] |
卢柯, 刘学东, 张皓月, 等. 纯镍纳米晶体的晶格膨胀[J]. 金属学报, 1995, 31(2):74-78. LU K , LIU X D, ZHANG H Y, et al. Lattice expansion in nanocrystalline pure[J]. Acta Metallrugica Sinica, 1995, 31(2):74-78.
|
[26] |
YU A, KUMAGAI N, LIU Z, et al. A new method for preparing lithiated vanadium oxides and their electrochemical performance in secondary lithium batteries[J]. Journal of Power Sources, 1998, 74(1):117-121.
|
[27] |
LIU X H, XIE G Y, HUANG C, et al. A facile method for preparing VO2 nanobelts[J]. Materials Letters, 2008, 62(12/13):1878-1880.
|
[28] |
ASS B, HORVATH J, STRUTZ J, et al. Preparation, properties, and ESCA characterization of vanadium surface compounds on silicagel. Ⅰ[J]. Chem., 1981, 483:181-192.
|
[29] |
KASPERKIEWICZ J, KOVACICH J A, LICHTAN D. XPS studies of vanadium and vanadium oxides[J]. J. Electron. Spectrosc. and Relat. Phenom., 1983, 32(2):123-132.
|
[30] |
TJENG L H, MEINDERS M B J, VAN ELP J, et al. Electronic structure of Ag2O[J]. Physical Review B Condensed Matter, 1990, 41(5):3190.
|
[31] |
HAMMOND J S, GAARENSTROOM S W, WINOGRAD N. X-Ray photoelectron spectroscopic studies of cadmium-and silver-oxygen surfaces[J]. Anal. Chem., 1975, 47(13):2193-2199.
|