CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2530-2546.DOI: 10.11949/0438-1157.20200338
• Reviews and monographs • Previous Articles Next Articles
Tao HU1,2(),Xiong ZHANG1,2(),Yabin AN1,Chen LI1,Yanwei MA1,2
Received:
2020-03-30
Revised:
2020-04-13
Online:
2020-06-05
Published:
2020-06-05
Contact:
Xiong ZHANG
胡涛1,2(),张熊1,2(),安亚斌1,李晨1,马衍伟1,2
通讯作者:
张熊
作者简介:
胡涛(1996—),男,博士研究生,基金资助:
CLC Number:
Tao HU, Xiong ZHANG, Yabin AN, Chen LI, Yanwei MA. Research progress of carbon cathode materials for Li-ion capacitors[J]. CIESC Journal, 2020, 71(6): 2530-2546.
胡涛, 张熊, 安亚斌, 李晨, 马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546.
Add to citation manager EndNote|Ris|BibTeX
1 | Suberu M Y, Mustafa M W, Bashir N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 499-514. |
2 | Kang J N, Wei Y M, Liu L C, et al. Energy systems for climate change mitigation: a systematic review[J]. Applied Energy, 2020, 263: 114602. |
3 | Lian J J, Zhang Y S, Ma C, et al. A review on recent sizing methodologies of hybrid renewable energy systems[J]. Energy Conversion and Management, 2019, 199: 112027. |
4 | Nazir M S, Ali N, Bilal M, et al. Potential environmental impacts of wind energy development: a global perspective[J]. Current Opinion in Environmental Science & Health, 2020, 13: 85-90. |
5 | Zhang Y H, Ren J, Pu Y R, et al. Solar energy potential assessment: a framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable Energy, 2020, 149: 577-586. |
6 | Mejia C, Kajikawa Y Y. Emerging topics in energy storage based on a large-scale analysis of academic articles and patents[J]. Applied Energy, 2020, 263: 114625. |
7 | 宋维力, 范丽珍. 超级电容器研究进展: 从电极材料到储能器件[J]. 储能科学与技术, 2016, 5(6): 788-799. |
Song W L, Fan L Z. Advances in supercapacitors: from electrodes materials to energy storage devices[J]. Energy Storage Science and Technology, 2016, 5(6): 788-799. | |
8 | 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23: 586-603. |
Sun X Z, Zhang X, Wang K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23: 586-603. | |
9 | 李章溢, 房凯, 刘强, 等. 储能技术在电力调峰领域中的应用[J]. 电器与能效管理技术, 2019, 10: 69-73. |
Li Z Y, Fang K, Liu Q, et al. Application of energy storage technology in power peak regulation[J]. Electrical & Energy Management Technology, 2019, 10: 69-73. | |
10 | 姚煜, 张楙慧. 高倍率锂离子电池材料研究进展[J]. 电源技术, 2019, 43(3): 511-514. |
Yao Y, Zhang M H. Research progress of materials for high power Li-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(3): 511-514. | |
11 | Zhao B Z, Ran R, Liu M L, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives[J]. Materials Science and Engineering: R: Reports, 2015, 98: 1-71. |
12 | Wang Y X, Liu B, Li Q Y, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review[J]. Journal of Power Sources, 2015, 286: 330-345. |
13 | Liu B H, Jia Y K, Yuan C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112. |
14 | Liu Q, Du C, Shen B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6: 88683-88700. |
15 | 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9): 1-12. |
Xiao M, Su Y P, Du B X. Research progress of supercapacitors[J]. Electronic Components and Materials, 2019, 38(9): 1-12. | |
16 | 黄晓斌, 张熊, 韦统振, 等. 超级电容器的发展及应用现状[J]. 电工电能新技术, 2017, 36(11): 63-70. |
Huang X B, Zhang X, Wei T Z, et al. Development and application of super capacitor[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 63-70. | |
17 | Afif A, Rahaman S M, Azad A T, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage—a review[J]. Journal of Energy Storage, 2019, 25: 100852. |
18 | Siwatch P, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
19 | Smith P H, Tran T N, Jiang T L, et al. Lithium-ion capacitors: electrochemical performance and thermal behavior[J]. Journal of Power Sources, 2013, 243: 982-992. |
20 | 叶成玉, 颜冬, 陆安慧, 等. 有机介质体系锂离子电容器[J]. 化工进展, 2019, 38(3): 1283-1296. |
Ye C Y, Yan D, Lu A H, et al. Lithium ion capacitors with organic electrolyte[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1283-1296. | |
21 | 巩瑞奇, 金黎明, 郑俊生, 等. 锂离子电容器: 理论、结构设计与应用[J]. 电子元件与材料, 2018, 37(10): 8-12. |
Gong R Q, Jin L M, Zheng J S, et al. Lithium ion capacitor: theory, structure and applications[J]. Electronic Components and Materials, 2018, 37(10): 8-12. | |
22 | Zhang X, Wang L, Liu W J, et al. Recent advances in MXenes for lithium-ion capacitors[J]. ACS Omega, 2020, 5: 75-82. |
23 | Amatucci G G, Badway F, Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148: 930-939. |
24 | Yu X L, Deng J J, Zhan C Z, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta, 2017, 228: 76-81. |
25 | Seman R N A R, Azam M A, Mohamad A A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 644-659. |
26 | Pasquier A D, Plitz I, Gural J, et al. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes[J]. Journal of Power Sources, 2003, 113: 62-71. |
27 | Luo J Y, Liu J L, He P, et al. A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte[J]. Electrochimica Acta, 2008, 53(28): 8128-8133. |
28 | Akio H. Development and applications of lithium ion capacitors[J]. Carbon, 2013, 57: 539. |
29 | Xu X N, Niu F E, Zhang D P, et al. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors[J]. Journal of Power Sources, 2018, 384: 240-248. |
30 | 李新. 钛酸锂基锂离子电容器电极材料的制备与性能优化[D]. 沈阳: 沈阳师范大学, 2019. |
Li X. Preparation and property optimization of electrode materials for lithium titanite-based lithium ion capacitors[D]. Shenyang: Shenyang Normal University, 2019. | |
31 | Han C P, Xu L, Li H F, et al. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors[J]. Carbon, 2018, 140: 296-305. |
32 | Li C, Zhang X, Wang K, et al. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode[J]. Carbon, 2018, 140: 237-248. |
33 | Li N W, Du X, Shi J L, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281: 459-465. |
34 | Ma H, Geng H, Yao B, et al. Highly ordered graphene solid: an efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability[J]. ACS Nano, 2019, 13: 9161-9170. |
35 | Li C, Zhang X, Wang K, et al. High-power lithium-ion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity[J]. Journal of Power Sources, 2018, 400: 468-477. |
36 | Li G, Yang Z, Yin H, et al. Non-aqueous dual-carbon lithium-ion capacitors: a review[J]. Journal of Materials Chemistry A, 2019, 7: 15541-15563. |
37 | Zhang S J, Li C, Zhang X, et al. High-performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials & Interfaces, 2017, 9: 17136-17144. |
38 | 刘丽莹. 有机系高比能量超级电容器的研究[D]. 长春: 吉林大学, 2019. |
Liu L Y. The study of supercapacitor with high specific energy in organic system[D]. Changchun: Jilin University, 2019. | |
39 | Eguchi T, Tashima D, Fukuma M, et al. Activated carbon derived from Japanese distilled liquor waste: application as the electrode active material of electric double-layer capacitors[J]. Journal of Cleaner Production, 2020, 259: 120822. |
40 | Sivakkumar S R, Pandolfo A G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65: 280-287. |
41 | Zhang J, Liu X F, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142. |
42 | Gómez-Cámer J L, Arnaiz M, Rojo T, et al. Novel lithium-ion capacitor based on tin phosphide and olive pit derived activated carbon[J]. Journal of Power Sources, 2019, 434: 226695. |
43 | Zhou J, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature Communications, 2015, 6: 8503. |
44 | Li W, Chen D, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9: 569-573. |
45 | Liu C H, Koyyalamudi B B, Li L, et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors[J]. Carbon, 2016, 109: 163-172. |
46 | Zhou X Y, Geng Z, Li B, et al. Oxygen doped activated carbon/SnO2 nanohybrid for high performance lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113398. |
47 | Ma Y, Chang H, Zhang M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27: 5296-5308. |
48 | Tie D, Huang S, Wang J, et al. Hybrid energy storage devices: advanced electrode materials and matching principles[J]. Energy Storage Materials, 2019, 21: 22-40. |
49 | 曲文慧. 高比能量锂离子电容器的构筑及其电化学性能研究[D]. 大连: 大连理工大学, 2016. |
Qu W H. Construction of lithium ion capacitor with high specific energy density and its electrochemical performance[D]. Dalian: Dalian University of Technology, 2016. | |
50 | 张进. 高比能锂离子电容器的设计与电化学性能研究[D]. 天津: 天津工业大学, 2016. |
Zhang J. Design and electrochemical performance of high specific energy lithium-ion capacitors[D]. Tianjin: Tiangong University, 2016. | |
51 | Aref A R, Chen S W, Rajagopalan R, et al. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors[J]. Carbon, 2019, 152: 89-97. |
52 | Berhaut C L, Lemordant, Porion P, et al. Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances[J]. RSC Advances, 2019, 9(8): 4599-4608. |
53 | Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
54 |
Thiruppathi A R, Sidhureddy B, Salyerda M, et al. Novel three-dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage[J]. Journal of Electroanalytical Chemistry, 2020, DOI: 10.1016/j.jelechem.2020.113911.
DOI URL |
55 | Zhao X R, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 11275-11283. |
56 | Korkmaz S, Kariper İ A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications[J]. Journal of Energy Storage, 2020, 27: 101038. |
57 | 方陵生在. 神奇材料石墨烯——2010年度诺贝尔物理学奖得主安德烈·盖姆访谈录[J]. 世界科学, 2010, 11: 11-12. |
Fang L S Z. Amazing material graphene: interview with Andre Geim, 2010 Nobel Prize winner in Physics[J]. World Science, 2010, 11: 11-12. | |
58 | Rao C N, Sood A K, Subrahmanyam K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48: 7752-7777. |
59 | Li C, Zhang X, Sun C K, et al. Recent progress of graphene-based materials in lithium-ion capacitors[J]. Journal of Physics D: Applied Physics, 2019, 52: 143001. |
60 | Ji W W, Liu Y J, Shan Z Q, et al. Boron doped graphene cathode for capacitor via a new one-step method[J]. Ceramics International, 2019, 45(6): 7095-7101. |
61 | 顾晓瑜, 洪晔, 艾果, 等. 高比能高功率全石墨烯锂离子电容器[J]. 化学学报, 2018, 76(8): 644-648. |
Gu X Y, Hong Y, Ai G, et al. All graphene lithium ion capacitor with high-energy-power density performance[J]. Acta Chimica Sinica, 2018, 76(8): 644-648. | |
62 | Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials, 2019, 23: 409-417. |
63 | Stoller M D, Murali S, Quarles N, et al. Activated graphene as a cathode material for Li-ion hybrid supercapacitors[J]. Physical Chemistry Chemical Physics, 2012, 14: 3388-3391. |
64 | Ajuria J, Arnaiz M, Botas C, et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities[J]. Journal of Power Sources, 2017, 363: 422-427. |
65 | Dsoke S, Fuchs B, Gucciardi E, et al. The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12[J]. Journal of Power Sources, 2015, 282: 385-393. |
66 | Raccichini R, Varzi A, Wei D, et al. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes[J]. Advanced Materials, 2017, 29: 1-33. |
67 | Zong J, Ni W, Xu H, et al. High tap-density graphene cathode material for lithium-ion capacitors via a mass-scalable synthesis method[J]. Chemical Engineering Journal, 2019, 360: 1233-1240. |
68 | Jeong J H, Lee G W, Kim Y H, et al. A holey graphene-based hybrid supercapacitor[J]. Chemical Engineering Journal, 2019, 378: 122126. |
69 | Li N W, Du X Y, Shi J L, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281: 459-465. |
70 | Li X, Tang Y, Song J H, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244. |
71 | Li X, Tang Y, Song J H, et al. Self-supporting lithium titanate nanorod/carbon nanotube/reduced graphene oxide flexible electrode for high performance hybrid lithium-ion capacitor[J]. Journal of Alloys and Compounds, 2019, 790: 1157-1166. |
72 | Li B, Dai F, Xiao Q, et al. Activated carbon from biomass transfer for high‐energy density lithium‐ion supercapacitors[J]. Advanced Energy Materials, 2016, 6: 1600802. |
73 | Natarajan S, Lee Y, Aravindan V. Biomass-derived carbon materials as prospective electrodes for high-energy lithium- and sodium-ion capacitors[J]. Chemistry—an Asian Journal, 2019, 14: 936-951. |
74 | Kumar A, Joseph S, Tsechansky L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018, 626: 953-961. |
75 | Ania C O, Khomenko V, Raymund-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Angewandte Chemie-International Edition, 2007, 17: 1828-1836. |
76 | Wu J, Zhang D, Wang Y, et al. Electrocatalytic activity of nitrogen-doped graphene synthesized via a one-pot hydrothermal process towards oxygen reduction reaction[J]. Journal of Power Sources, 2013, 227: 185-190. |
77 | Lu Q, Lu B, Chen M F, et al. Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor[J]. Journal of Power Sources, 2018, 398: 128-136. |
78 | Lu B, Ma B, Yu R, et al. Photovoltaic monocrystalline silicon waste‐derived hierarchical silicon/flake graphite/carbon composite as low-cost and high-capacity anode for lithium-ion batteries[J]. Chemistry Select, 2017, 2: 3479. |
79 | Wang P, Zhang G, Li M Y, et al. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors[J]. Chemical Engineering Journal, 2019, 375: 122020. |
80 | Wang P, Ye H, Yin Y X, et al. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon[J]. Advanced Materials, 2018, 31: 1805134. |
81 | Zhu G Y, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale, 2017, 9: 1237-1243. |
82 | Zhu G Y, Chen T, Wang L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode[J]. Energy Storage Materials, 2018, 14: 246-252. |
83 | Yang Z W, Guo H J, Li X H, et al. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor[J]. Journal of Power Sources, 2016, 329: 339-346. |
84 | Kumagai S, Abe Y, Saito T, et al. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation[J]. Journal of Power Sources, 2019, 437: 226924. |
85 | Babu B, Lashmi P G, Shaijumon M M. Li-ion capacitor based on activated rice husk derived porous carbon with improved electrochemical performance[J]. Electrochimica Acta, 2016, 211: 289-296. |
86 | Jain A, Jayaraman S, Ulaganathan M, et al. Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors[J]. Electrochimica Acta, 2017, 228: 131-138. |
87 | Gokhale R, Aravindan V, Yadav P, et al. Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application[J]. Carbon, 2014, 80: 462-471. |
88 | Li B, Dai F, Xiao Q, et al. Activated carbon from biomass transfer for high‐energy density lithium‐ion supercapacitors[J]. Advanced Energy Materials, 2016, 6: 1600802. |
89 | Zhao X, Johnston C, Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry, 2009, 19: 8755-8760. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[6] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[7] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[8] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[9] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[10] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[15] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||