CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4745-4753.DOI: 10.11949/0438-1157.20220473
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Boyang REN1,2(), Xiaogang CHE1(), Siyu LIU1, Man WANG1, Xinghua HAN2(), Ting DONG2, Juan YANG1()
Received:
2022-04-01
Revised:
2022-07-12
Online:
2022-11-02
Published:
2022-10-05
Contact:
Xinghua HAN, Juan YANG
任博阳1,2(), 车晓刚1(), 刘思宇1, 王满1, 韩兴华2(), 董婷2, 杨卷1()
通讯作者:
韩兴华,杨卷
作者简介:
任博阳(1996—),男,硕士研究生,1433783163@qq.com基金资助:
CLC Number:
Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries[J]. CIESC Journal, 2022, 73(10): 4745-4753.
任博阳, 车晓刚, 刘思宇, 王满, 韩兴华, 董婷, 杨卷. 熔融盐法制备煤基多孔碳纳米片用于钠离子电池负极[J]. 化工学报, 2022, 73(10): 4745-4753.
Add to citation manager EndNote|Ris|BibTeX
1 | Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694. |
2 | Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
3 | Liu W, Chen Z, Zhou G M, et al. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries[J]. Advanced Materials, 2016, 28(18): 3578-3583. |
4 | Delmas C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. |
5 | Deng J Q, Luo W B, Chou S L, et al. Sodium-ion batteries: from academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. |
6 | Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177. |
7 | 杨绍斌, 董伟, 沈丁, 等. 钠离子电池负极材料的研究进展[J]. 中国有色金属学报, 2016, 26(5): 1054-1064. |
Yang S B, Dong W, Shen D, et al. Research progress of anode material for sodium-ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1054-1064. | |
8 | Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
9 | Yin J, Zhang W L, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020, 4(3): 1900853. |
10 | Zhang Y H, Wang N N, Xue P, et al. Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery[J]. Chemical Engineering Journal, 2018, 343: 512-519. |
11 | Liu M K, Zhang P, Qu Z H, et al. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery[J]. Nature Communications, 2019, 10: 3917. |
12 | Liu J L, Zhang Y Q, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31(24): 1901261. |
13 | Zhou D, Fan L Z. Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(5): 2139-2147. |
14 | Yang J Q, Zhou X L, Wu D H, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6): 1604108. |
15 | Xu X, Zhao R S, Ai W, et al. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance[J]. Advanced Materials, 2018, 30(27): 1800658. |
16 | Shao W L, Hu F Y, Song C, et al. Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(11): 6363-6373. |
17 | Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224. |
18 | Qin B, Wang Q, Zhang X H, et al. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 283: 655-663. |
19 | He X J, Ma H, Wang J X, et al. Porous carbon nanosheets from coal tar for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 357: 41-46. |
20 | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. | |
21 | Liu X F, Antonietti M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69: 460-466. |
22 | Pang Z Y, Li G S, Xiong X L, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: a review[J]. Journal of Energy Chemistry, 2021, 61: 622-640. |
23 | Liu X F, Giordano C, Antonietti M. A facile molten-salt route to graphene synthesis[J]. Small, 2014, 10(1): 193-200. |
24 | Yu Z F, Wang X Z, Hou Y N, et al. Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization[J]. Carbon, 2017, 117: 376-382. |
25 | Wang Y X, Wang Y W, Liu J L, et al. Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage[J]. Carbon, 2017, 122: 344-351. |
26 | Wang Y X, Tian W, Wang L H, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5577-5585. |
27 | Peng T Y, Tan Z H, Zhang M D, et al. Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage[J]. Carbon, 2020, 165: 296-305. |
28 | Xing B L, Zeng H H, Huang G X, et al. Magnesium citrate induced growth of noodle-like porous graphitic carbons from coal tar pitch for high-performance lithium-ion batteries[J]. Electrochimica Acta, 2021, 376: 138043. |
29 | 冯雪廷, 矫庆泽, 李群, 等. NiCo2S4/N, S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324. |
Feng X T, Jiao Q Z, Li Q, et al. Preparation and sodium storage performance of NiCo2S4/N, S-rGO nanocomposites[J]. CIESC Journal, 2020, 71(9): 4314-4324. | |
30 | 张毅舟, 吴籼虹, 王治宇, 等. 镶嵌单层MoS2的生物质基硼氮共掺杂碳纳米片合成与储钠性能[J]. 化工学报, 2021, 72(12): 6371-6379. |
Zhang Y Z, Wu X H, Wang Z Y, et al. Biomass-derived B/N co-doped carbon nanosheets decorated with single-layered MoS2 for sodium storage[J]. CIESC Journal, 2021, 72(12): 6371-6379. | |
31 | Gaddam R R, Yang D F, Narayan R, et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries[J]. Nano Energy, 2016, 26: 346-352. |
32 | Yoon D, Hwang J, Chang W, et al. Carbon with expanded and well-developed graphene planes derived directly from condensed lignin as a high-performance anode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 569-581. |
33 | Zou G Q, Wang C, Hou H S, et al. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries[J]. Small, 2017, 13(31): 1700762. |
[1] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[2] | Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve [J]. CIESC Journal, 2022, 73(6): 2334-2351. |
[3] | Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance [J]. CIESC Journal, 2022, 73(4): 1807-1816. |
[4] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
[5] | LIU Yizheng, SHI Bin, RAN Ling, TANG Jun, TAN Siping, LIU Jiangtao, ZHANG Peng, ZHAO Jinbao. Research progress of molten salt electrolyte and separator materials for thermal batteries [J]. CIESC Journal, 2021, 72(7): 3524-3537. |
[6] | WEI Xiaolan, XIE Pei, WANG Weilong, LU Jianfeng, DING Jing. Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium [J]. CIESC Journal, 2021, 72(6): 3074-3083. |
[7] | XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868. |
[8] | Boyang WANG, Jili XIA, Xiaoling DONG, Hang GUO, Wencui LI. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism [J]. CIESC Journal, 2021, 72(11): 5738-5750. |
[9] | Feng GAO, Yongchang CHEN, Jinlong ZHAO, Chongfang MA. Influence of magnetic field on jet impingement heat transfer with molten salt [J]. CIESC Journal, 2020, 71(S2): 92-97. |
[10] | Guoda HE, Rui TANG, Xuezhi DUAN, Leidong XIE, Jie FU, Jianxing DAI, Yuan QIAN, Jianqiang WANG. Molecular dynamics investigation on microstructure and diffusion properties of LiF-BeF2 molten salt [J]. CIESC Journal, 2020, 71(8): 3565-3574. |
[11] | Xiaolan WEI, Pei XIE, Xuechuan ZHANG, Weilong WANG, Jianfeng LU, Jing DING. Research on preparation and thermodynamic properties of chloride molten salt materials [J]. CIESC Journal, 2020, 71(5): 2423-2431. |
[12] | Mei XU, Huaiwu PENG, Dongsheng NIU, Xiao WANG, Bin XIAO, Zhi ZHOU, Yanglong DUAN, Junfeng ZHANG. Study on dynamic and static performance of external tubular molten salt receiver [J]. CIESC Journal, 2020, 71(5): 2049-2060. |
[13] | Gang WANG,Yaxuan XIONG,Yuting WU,Peng XU,Guanghui LENG,Chongfang MA. Startup and isothermal performance of high-temperature molten salt heat pipe [J]. CIESC Journal, 2020, 71(11): 5099-5106. |
[14] | Xiangyang SHEN,Jing DING,Jianfeng LU. Numerical study of transient heat transfer performance for molten salt receiver tube [J]. CIESC Journal, 2020, 71(11): 5140-5149. |
[15] | Minshan MENG, Jiahua ZHAO, Pengfei ZHANG. Synthesis of carbides supported on ordered mesoporous carbon by molten salt method [J]. CIESC Journal, 2020, 71(1): 409-416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||