[1] |
CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Developments and Applications of Non-Newtonian Flows, 1995, 66:99-105.
|
[2] |
PAPELL S. Magnetic fluid:US3215572[P]. 1963-9.
|
[3] |
MAXWELL J C. Colours in metallic films[J]. Philosophical Transaction of the Royal Society A, 1904, 203:358-420.
|
[4] |
YU W, CHOI S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Maxwell model[J]. Journal of Nanoparticle Research, 2003, 5:167-171.
|
[5] |
HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial and Engineering Chemistry Fundamentals, 1962, 3:187-191.
|
[6] |
PRASHER R, BHATTACHARYA P, PHELAN P E. Thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Physical Review Letters, 2005, 94:025091.
|
[7] |
JANG S P, CHOI S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84:4316-4318.
|
[8] |
KUMAR D H, PATEL H E, KUMAR V R R, et al. Model for heat conduction in nanofluids[J]. Physical Review Letters, 2004, 93:144301.
|
[9] |
戴闻亭, 李俊明, 陈骁, 等. 细圆管内纳米悬浮液对流换热的实验研究[J]. 工程热物理学报, 2003, (4):633-636. DAI W T, LI J M, CHEN X, et al. Experimental investigation on convective heat transfer of copper oxide nanoparticle suspensions inside mini-diameter tubes[J]. Journal of Engineering Thermophysics, 2003, (4):633-636.
|
[10] |
SUNDAR L S, NAIK M T, SHARMA K V, et al. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid[J]. Experimental Thermal and Fluid Science, 2012, 37:65-71.
|
[11] |
YARAHMADI M, MOAZAMI G H, SHAFⅡ M B. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes[J]. Experimental Thermal and Fluid Science, 2015, 68:601-611.
|
[12] |
MOHAMMAD G, ARMIA S, MEHDI A, et al. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field[J].Powder Technology, 2015, 274:258-267.
|
[13] |
GHOFRANI G, DIBAEI M H, SIMA A H, et al. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field[J]. Experimental Thermal and Fluid Science, 2013, 49:193-200.
|
[14] |
宣益民. 纳米流体能量传递理论与应用[J]. 中国科学:技术科学, 2014, 44(3):269-279. XUAN Y M. An overview on nanofluids and applications[J]. Sci. Sin. Tech., 2014, 44(3):269-279.
|
[15] |
RAZI P, BEHAHADI M A A, SAEEDINIA M. Pressure drop and thermal characteristics of CuO-base oil nanofluid laminar flow in flattened tubes under constant heat flux[J]. International Communications in Heat and Mass Transfer, 2011, 38:964-971.
|
[16] |
TENG T P, HSU H G, MO H E. Thermal efficiency of heat pipe with alumina nanofluid[J]. Journal of Alloys and Compounds, 2010, 504:380-384.
|
[17] |
KAYHANI M H, SOLTANZADEH H, HEYHAT M M, et al. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid[J]. International Communications in Heat and Mass Transfer, 2012, 39:456-462.
|
[18] |
SURESH S, SELVAKUMAR P, CHANDRASEKAR M, et al. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiraled rod inserts[J]. Chemical Engineering and Processing, 2012, 53:24-30.
|
[19] |
SUNDAR L S, NAIK M T, SHARMA K V, et al. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid[J]. Experimental Thermal and Fluid Science, 2012, 37:65-71.
|
[20] |
SAJADI A R, KAZEMI M H. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube[J]. International Communications in Heat and Mass Transfer, 2011, 38:1474-1478.
|
[21] |
SONAWANE S, PATANKAR K, FOGLA A, et al. An experimental investigation of thermo-physical properties and heat transfer performance of Al2O3-aviation turbine fuel nanofluids[J]. Applied Thermal Engineering, 2011, 31:2841-2849.
|
[22] |
AMROLLAHI A, RASHIDI A M, LOTFI R, et al. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region[J]. International Communications in Heat and Mass Transfer, 2010, 37:717-723.
|
[23] |
YU W H, FRANCE D M, SMITH D S, et al. Heat transfer to a silicon carbide/water nanofluid[J]. International Journal of Heat and Mass Transfer, 2009, 52:3606-3612.
|
[24] |
KIM D, KWON Y, CHO Y. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions[J]. Current Applied Physics, 2009, 9:119-123.
|
[25] |
MEIBODI M E, SEFTI M V, RASHIDI A M, et al. An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions[J]. International Communications in Heat and Mass Transfer, 2010, 37:895-900.
|
[26] |
BUYEVICH Y A, IVANOV A O. Physica A[M]. Amsterdam, 1992:190:276.
|
[27] |
ROSENSWEIG. Ferrohydrodynamics[M]. New York:Dover, 1997.
|
[28] |
BRINKMAN H. The viscosity of concentrated suspensions and solutions[J]. Journal of Chemical Physics, 1952, 20:571.
|
[29] |
EINSTEIN A. Eine neue bestimmung der moleküldimensionen[J]. Annals of Physics, 1906, 324(2):289-306.
|
[30] |
SHAH R K. Thermal entry length solutions for the circular tube and parallel plates[C]//Proceedings of 3rd National Heat and Mass Transfer Conference. Delhi:Indian Institute of Technology Bombay, 1975.
|