[1] |
AYDIN D, CASEY S P, RIFFATR S. The latest advancements on thermochemical heat storage systems[J]. Renewable & Sustainable Energy Reviews, 2015, 41(41):356-367.
|
[2] |
马小琨, 徐超, 于子博, 等. 基于水合盐热化学吸附的储热技术[J]. 科学通报, 2015, 60(36):3569-3579. MA X K, XU C, YU Z B, et al. A review of salt hydrate-based sorption technologies for long-term thermal energy storage[J]. Chinese Science Bulletin, 2015, 60(36):3569-3579.
|
[3] |
KUZNIK F, JOHANNES K, OBRECHT C. Chemisorption heat storage in buildings:state-of-the-art and outlook[J]. Energy & Buildings, 2015, 106:183-191.
|
[4] |
CABEZA L F, SOLE A, BARRENECHE C. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110:3-39.
|
[5] |
YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable & Sustainable Energy Reviews, 2015, 43:13-31.
|
[6] |
SIMONOVA I A, ARISTOV Y I. Sorption properties of calcium nitrate dispersed in silica gel:the effect of pore size[J]. Russian Journal of Physical Chemistry, 2005, 79(8):1307-1311.
|
[7] |
COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites:enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157:532-541.
|
[8] |
HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2011, 95(7):1831-1837.
|
[9] |
WHITING G T, GRONDIN D, STOSIC D, et al. Zeolite-MgCl2, composites as potential long-term heat storage materials:influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials & Solar Cells, 2014, 128(5):289-295.
|
[10] |
LIU H, NAGANO K, TOGAWA J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111:186-200.
|
[11] |
GREKOVA A D, GORDEEVA L G, ARISTOV Y I. Composite "LiCl/vermiculite" as advanced water sorbent for thermal energy storage[J]. Applied Thermal Engineering, 2017, 124:1401-1408.
|
[12] |
ZHU D, WU H, WANG S. Experimental study on composite silica gel supported CaCl2, sorbent for low grade heat storage[J]. International Journal of Thermal Sciences, 2006, 45(8):804-813.
|
[13] |
GLAZNEV I, PONOMARENKO I, KIRIK S, et al. Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat:pore size effect[J]. International Journal of Refrigeration, 2011, 34(5):1244-1250.
|
[14] |
MICHEL B, MAZET N, NEVEU P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy:global performance[J]. Applied Energy, 2014, 129:177-186.
|
[15] |
COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2, and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190:1184-1194.
|
[16] |
N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124(7):1-16.
|
[17] |
ARISTOV Y I, RESTUCCIA G, CACCIOLA G, et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied Thermal Engineering, 2002, 22(2):191-204.
|
[18] |
GORDEEVA L, GREKOVA A, KRIEGER T, et al. Composites "binary salts in porous matrix" for adsorption heat transformation[J]. Applied Thermal Engineering, 2013, 50(2):1633-1638.
|
[19] |
ZHANG Y N, WANG R Z, ZHAO Y J, et al. Development and thermochemical characterizations of vermiculite/SrBr2, composite sorbents for low-temperature heat storage[J]. Energy, 2016, 115:120-128.
|
[20] |
ZHANG Y N, WANG R Z, LI TX, et al. Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage[J]. Energies, 2016, 9(10):854.
|
[21] |
YU N, WANG R Z, LU Z S, et al. Evaluation of a three-phase sorption cycle for thermal energy storage[J]. Energy, 2014, 67(4):468-478.
|
[22] |
GONG L X, WANG R Z, XIA Z Z, et al. Adsorption equilibrium of water on a composite adsorbent employing lithium chloride in silica gel[J]. Journal of Chemical & Engineering Data, 2010, 55(8):2920-2923.
|
[23] |
YU N, WANG R Z, WANG L W, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111(36):73-84.
|
[24] |
DUMAN O, TUNC S. Electrokinetic properties of vermiculite and expanded vermiculite:effects of pH, clay concentration and mono-and multivalent electrolytes[J]. Separation Science & Technology, 2008, 43(14):3755-3776.
|
[25] |
李军, 邱瑾, 龙英才. CXN天然沸石的研究(Ⅱ):吸附性质[J]. 化学学报, 2000, 58(8):988-991. LI J, QIU J, LONG Y C. Studies on CXN natural zeolite(Ⅱ):adsorption properties[J]. Acta Chimica Sinica, 2000, 58(8):988-991.
|
[26] |
余楠, 王如竹. 以硅胶和活性炭为基质的复合吸附剂吸附性能的对比[J]. 科学通报, 2015, 60(21):2029-2035. YU N, WANG R Z. Comparison study on the sorption properties of silica gel-and activated carbon-LiCl composite sorbents[J]. Chinese Science Bulletin, 2015, 60(21):2029-2035.
|
[27] |
N'TSOUKPOE K E, RAMMELBERG H U, LELE A F, et al. A review on the use of calcium chloride in applied thermal engineering[J]. Applied Thermal Engineering, 2015, 75:513-531.
|
[28] |
CONDE M R. Properties of aqueous solutions of lithium and calcium chlorides:formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4):367-382.
|
[29] |
IYIMEN-SCHWARZ Z, LECHNER M D. Energiespeicherung durch chemische reaktionen(Ⅰ):DSC-messungen zur quantitativen verfolgung der enthalpieänderungen von speicherstoffen für die hin-und rückreaktion[J]. Thermochimica Acta, 1983, 68(2):349-361.
|
[30] |
LEVITSKIJ E A, ARISTOV Y I, TOKAREV M M, et al. "Chemical heat accumulators":a new approach to accumulating low potential heat[J]. Solar Energy Materials & Solar Cells, 1996, 44(3):219-235.
|