CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 352-362.DOI: 10.11949/j.issn.0438-1157.20171058
Previous Articles Next Articles
LIU Hu, LI Chun
Received:
2017-08-08
Revised:
2017-12-09
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171058
Supported by:
supported by the National Natural Science Foundation of China (21706012, 21425624) and the China Postdoctoral Science Foundation Funded Project(2016M600936).
刘护, 李春
通讯作者:
李春
基金资助:
国家自然科学基金项目(21706012,21425624);中国博士后科学基金面上资助(2016M600936)。
CLC Number:
LIU Hu, LI Chun. Oligomeric structure of enzyme and its catalysis stability[J]. CIESC Journal, 2018, 69(1): 352-362.
刘护, 李春. 酶的寡聚结构与催化稳定性[J]. 化工学报, 2018, 69(1): 352-362.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171058
[1] | BORNSCHEUER U T, HUISMAN G W, KAZLAUSKAS R J, et al. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397):185-194. |
[2] | LÜ B, YANG X, FENG X, et al. Enhanced production of glycyrrhetic acid 3-O-mono-β-D-glucuronide by fed-batch fermentation using pH and dissolved oxygen as feedback parameters[J]. Chinese Journal of Chemical Engineering, 2016, 24(4):506-512. |
[3] | HUANG S, FENG X, LI C. Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes[J]. Frontiers of Chemical Science and Engineering, 2015, 9(4):501-510. |
[4] | DOBSON R C J, VALEGÅRD K, GERRARD J A. The Crystal Structure of Three site-directed mutants of Escherichia coli dihydrodipicolinate synthase:further evidence for a catalytic triad[J]. Journal of Molecular Biology, 2004, 338(2):329-339. |
[5] | WALLACE B D, WANG H, LANE K T, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme[J]. Science, 2010, 330(6005):831-835. |
[6] | FRASER N J, LIU J W, MABBITT P D, et al. Evolution of protein quaternary structure in response to selective pressure for increased thermostability[J]. Journal of Molecular Biology, 2016, 428(11):2359-2371. |
[7] | BERTOŠA B, MIKLEUŠEVI? G, WIELGUS K B, et al. Homooligomerization is needed for stability:a molecular modelling and solution study of Escherichia coli purine nucleoside phosphorylase[J]. FEBS Journal, 2014, 281(7):1860-1871. |
[8] | SCHWAB T, SKEGRO D, MAYANS O, et al. A rationally designed monomeric variant of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus is as active as the dimeric wild-type enzyme but less thermostable[J]. Journal of Molecular Biology, 2008, 376(2):506-516. |
[9] | SMITH F D, ESSELTINE J L, NYGREN P J, et al. Local protein kinase A action proceeds through intact holoenzymes[J]. Science, 2017, 356(6344):1288-1298. |
[10] | KIM T H, MEHRABI P, REN Z, et al. The role of dimer asymmetry and protomer dynamics in enzyme catalysis[J]. Science, 2017, 355(6322):1-11. |
[11] | AUDIN M J C, WURM J P, CVETKOVIC M A, et al. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation[J]. Nucleic Acids Research, 2016, 44(6):2962-2973. |
[12] | SONG E S, RODGERS D, WHERSH L B. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties[J]. PloS One, 2010, 41(5):9719-9729. |
[13] | CHOI P H, JEANYOUNG J, LIN Y C, et al. A distinct holoenzyme organization for two-subunit pyruvate carboxylase[J]. Nature Communications, 2016, 7:12713-12720. |
[14] | KIM S, GRANT R A, SAUER R T. Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages[J]. Cell, 2011, 145(1):67-78. |
[15] | WANG F, WANG K, XU W, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice[J]. Cell Reports, 2017, 19(11):2331-2344. |
[16] | KIBURU I N, LARONDE L N. Interaction of Rio1 kinase with toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity[J]. PloS One, 2012, 10(11):37371-37382. |
[17] | CHOI J M, HAN S S, KIM H S. Industrial applications of enzyme biocatalysis:current status and future aspects[J]. Biotechnology Advances, 2015, 33(7):1443-1454. |
[18] | SMOCK R G, YADID I, DYM O, et al. De novo evolutionary emergence of a symmetrical protein is shaped by folding constraints[J]. Cell, 2016, 164(3):476-486. |
[19] | ALI M H, IMPERIALI B. Protein oligomerization:how and why[J]. Bioorganic & Medicinal Chemistry, 2005, 13(17):5013-5020. |
[20] | SØRENSEN H P, MORTENSEN K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2005, 4(1):1-8. |
[21] | MATSUURA T, HOSODA K, ICHIHASHI N, et al. Kinetic analysis of beta-galactosidase and beta-glucuronidase tetramerization coupled with protein translation[J]. Journal of Biological Chemistry, 2011, 286(25):22028-22034. |
[22] | MATSUURA T, HOSODA K, KAZUTA Y, et al. Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis[J]. ACS Synthetic Biology, 2012, 1(9):431-437. |
[23] | YOVAL S B, PARDO J P, RODRÍGUEZ Z J S. New insights into the half-of-the-sites reactivity of human aldehyde dehydrogenase 1A1[J]. Proteins:Structure, Function, and Bioinformatics, 2013, 81(8):1330-1339. |
[24] | JOSEPH E, LE C Q, NGUYEN T, et al. Evidence of negative cooperativity and half-site reactivity within a F420-dependent enzyme:kinetic analysis of F420H2:NADP+ oxidoreductase[J]. Biochemistry, 2016, 55(7):1082-1090. |
[25] | NIJVIPAKUL S, BALLOU D P, CHAIYEN P. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1):half-sites reactivity[J]. Biochemistry, 2010, 49(43):9241-9248. |
[26] | FRENCH R L, GUPTA N, COPELAND P R, et al. Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis[J]. Journal of Biological Chemistry, 2014, 289(42):28783-28794. |
[27] | YUAN C, RIEKE C J, RIMON G, et al. Partnering between monomers of cyclooxygenase-2 homodimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16):6142-6147. |
[28] | FERNANDEZ L R. Stabilization of multimeric enzymes:strategies to prevent subunit dissociation[J]. Enzyme & Microbial Technology, 2009, 45(6):405-418. |
[29] | 李家冬, 王弘. 重组蛋白正确折叠与修饰的提高策略[J]. 生物工程学报, 2017, 33(4):591-600. LI J D, WANG H. Strategies to improve the folding and modification of recombinant proteins:a review[J]. Chinese Journal of Biotechnology, 2017, 33(4):591-600. |
[30] | PRACHAYASITTIKUL V, LJUNG S, ISARANKURA N C, et al. NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase[J]. International Journal of Biological Sciences, 2006, 2(1):10-16. |
[31] | SCHACHNER L F, HAN G, DILLON M A, et al. Characterization of chain pairing variants of bispecific IgG expressed in a single host cell by high resolution native and denaturing mass spectrometry[J]. Analytical Chemistry, 2016, 88(24):12122-12130. |
[32] | SCHOFIELD D M, SIRKA E, KESHAVARZMOORE E, et al. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA[J]. Biotechnology Letters, 2017, 39(12):1865-1873. |
[33] | TAKA J, OGASAHARA K, JEYAKANTHAN J, et al. Stabilization due to dimer formation of phosphoribosyl anthranilate isomerase from Thermus thermophilus HB8:X-ray analysis and DSC experiments[J]. Journal of Biochemistry, 2005, 137(5):569-578. |
[34] | BOLIVAR J M, CAVA F, MATEO C, et al. Immobilization-stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus[J]. Applied Microbiology & Biotechnology, 2008, 80(1):49-58. |
[35] | CHANG H C, CHOU W Y, CHANG G G. Effect of metal binding on the structural stability of pigeon liver malic enzyme[J]. Journal of Biological Chemistry, 2002, 277(7):4663-4671. |
[36] | HELLER M C, CARPENTER J, FRANDOLPH T W. Effects of phase separating systems on lyophilized hemoglobin[J]. Journal of Pharmaceutical Sciences, 1996, 85(12):1358-1362. |
[37] | ANCHORDOQUY T J, IZUTSU K I, RANDOLPH T W, et al. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying[J]. Archives of Biochemistry & Biophysics, 2001, 390(1):35-41. |
[38] | QUIOCHO F, ARICHARDS F M. Intermolecular cross linking of a protein in the crystalline state:carboxypeptidase-A[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(3):833-841. |
[39] | SHELDON R A. Cross-linked enzyme aggregates (CLEAs):stable and recyclable biocatalysts[J]. Biochemical Society Transactions, 2007, 35(6):1583-1587. |
[40] | BOLIVAR J M, TRIBULATO M A, PETRASEK Z, et al. Let the substrate flow, not the enzyme:practical immobilization of D-amino acid oxidase in a glass microreactor for effective biocatalytic conversions[J]. Biotechnology & Bioengineering, 2016, 113(11):2342-2349. |
[41] | YOSHIMOTO M, SAKAMOTO H, YOSHIMOTO N. Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes[J]. Enzyme & Microbial Technology, 2007, 41(7):849-858. |
[42] | YOSHIMOTO M, SAKAMOTO H, SHIRAKAMI H. Covalent conjugation of tetrameric bovine liver catalase to liposome membranes for stabilization of the enzyme tertiary and quaternary structures[J]. Colloids & Surfaces B Biointerfaces, 2009, 69(2):281-290. |
[43] | AISSAOUI N, LANDOULSI J, BERGAOUI L, et al. Catalytic activity and thermostability of enzymes immobilized on silanized surface:influence of the crosslinking agent[J]. Enzyme & Microbial Technology, 2013, 52(6/7):336-346. |
[44] | ZHANG Y, REN H, WANG Y, et al. Bioinspired immobilization of glycerol dehydrogenase by metal ion-chelated polyethyleneimines as artificial polypeptides[J]. Scientific Reports, 2016, 6:24163-24170. |
[45] | ZHAO L, LIU Q, YAN S, et al. Multimeric immobilization of alcohol oxidase on electrospun fibers for valid tests of alcoholic saliva[J]. Journal of Biotechnology, 2013, 168(1):46-54. |
[46] | SONG W J, TEZCAN F A. A designed supramolecular protein assembly with in vivo enzymatic activity[J]. Science, 2014, 346(6216):1525-1528. |
[47] | PERICA T, CHOTHIA C, TEICHMANN S A. Evolution of oligomeric state through geometric coupling of protein interfaces[J]. Proceedings of the National Academy of Sciences, 2012, 109(21):8127-8132. |
[48] | NORN C, HANDRÉ I. Computational design of protein self-assembly[J]. Current Opinion in Structural Biology, 2016, 39:39-49. |
[49] | RICODÍAZ A, ÁLVAREZCAO M, ESCUDERRODRÍGUEZ J J, et al. Rational mutagenesis by engineering disulphide bonds improves Kluyveromyces lactisbeta-galactosidase for high-temperature industrial applications[J]. Scientific Reports, 2017, 7:65-72. |
[50] | LIU S. A review on protein oligomerization process[J]. International Journal of Precision Engineering & Manufacturing, 2015, 16(13):2731-2760. |
[51] | ROUVINSKI A, DEJNIRATTISAI W, GUARDADO C P, et al. Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope[J]. Nature Communications, 2017, 8:15411-15420. |
[52] | DAS M, KOBAYASHI M, YAMADA Y, et al. Design of disulfide-linked thioredoxin dimers and multimers through analysis of crystal contacts[J]. Journal of molecular biology, 2007, 372(5):1278-1292. |
[53] | TAN Z, LI J, WU M, et al. Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge[J]. Applied Biochemistry and Biotechnology, 2014, 173(7):1752-1764. |
[54] | BOGIN O, LEVIN I, HACHAM Y, et al. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii:contribution of salt bridging[J]. Protein Science A Publication of the Protein Society, 2002, 11(11):2561-2572. |
[55] | WILLIAMS J C, ZEELEN J P, NEUBAUER G, et al. Structural and mutagenesis studies of leishmania triosephosphate isomerase:a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power[J]. Protein Engineering, 1999, 12(3):243-256. |
[56] | BOYKEN S E, CHEN Z, GROVES B, et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity[J]. Science, 2016, 352(6286):680-691. |
[57] | ARABNEJAD H, LAGO M D, JEKEL P A, et al. A robust cosolvent-compatible halohydrin dehalogenase by computational library design[J]. Protein Engineering Design & Selection Peds, 2017, 30(3):173-181. |
[58] | PEIMBERT M, DOMÍNGUEZ-RAMÍREZ L, FERNÁNDEZ-VELASCO D A. Hydrophobic repacking of the dimer interface of triosephosphate isomerase by in silico design and directed evolution[J]. Biochemistry, 2008, 47(20):5556-5564. |
[59] | TIAN J, WANG P, HUANG L, et al. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method[J]. Applied Microbiology & Biotechnology, 2013, 97(7):2997-3006. |
[60] | DU K, ZHAO J, SUN J, et al. Specific ligation of two multimeric enzymes with native peptides and immobilization with controlled molar ratio[J]. Bioconjugate Chemistry, 2017, 28(4):1166-1176. |
[61] | YEOM S J, HAN G H, KIM M, et al. Controlled aggregation and increased stability of β-glucuronidase by cellulose binding domain fusion[J]. PloS One, 2017, 12(1):e0170398-e0170409. |
[62] | SHARMA P, KAILA P, GUPTASARMA P. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly-related glycosyl hydrolases[J]. FEBS Journal, 2016, 283(23):4340-4349. |
[63] | TONG Y, HUGHES D, PLACANICA L, et al. When monomers are preferred:a strategy for the identification and disruption of weakly oligomerized proteins[J]. Structure, 2005, 13(1):7-15. |
[64] | BOSSHART A, PANKE S, BECHTOLD M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme[J]. Angewandte Chemie, 2013, 52(37):9673-9676. |
[65] | SEETOH W G, ABELL C. Disrupting the constitutive, homodimeric protein-protein interface in CK2β using a biophysical fragment-based approach[J]. Journal of the American Chemical Society, 2016, 138(43):14303-14311. |
[66] | 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11):1649-1657. FENG X D, LI C. The improvement of enzyme properties and its catalytic engineering strategy[J]. Progress in Chemistry, 2015, 27(11):1649-1657. |
[67] | JOSEPH P R B, POLURI K M, GANGAVARAPU P, et al. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins[J]. Biophysical Journal, 2013, 105(6):1491-1501. |
[68] | 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1):277-284. FENG X D, LÜ B, LI C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1):277-284. |
[69] | SCHWAB T, STERNER R. Stabilization of a metabolic enzyme by library selection in Thermus thermophilus[J]. Chembiochem:a European Journal of Chemical Biology, 2011, 12(10):1581-1588. |
[70] | STEPANENKO O V, ROGINSKⅡ D O, STEPANENKO O V, et al. Structure and stability of recombinant bovine odorant-binding protein(Ⅲ):Peculiarities of the wild type bOBP unfolding in crowded milieu[J]. PeerJ, 2016, 14(1):1642-1653.alysis of crystal contacts[J]. Journal of molecular biology, 2007, 372(5):1278-1292. |
[55] | TAN Z, LI J, WU M, et al. Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge[J]. Applied Biochemistry and Biotechnology, 2014, 173(7):1752-1764. |
[56] | BOGIN O, LEVIN I, HACHAM Y, et al. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii:contribution of salt bridging[J]. Protein Science A Publication of the Protein Society, 2002, 11(11):2561-2572. |
[57] | WILLIAMS J C, ZEELEN J P, NEUBAUER G, et al. Structural and mutagenesis studies of leishmania triosephosphate isomerase:a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power[J]. Protein Engineering, 1999, 12(3):243-256. |
[58] | BOYKEN S E, CHEN Z, GROVES B, et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity[J]. Science, 2016, 352(6286):680-691. |
[59] | ARABNEJAD H, LAGO M D, JEKEL P A, et al. A robust cosolvent-compatible halohydrin dehalogenase by computational library design[J]. Protein Engineering Design & Selection Peds, 2017, 30(3):173-181. |
[60] | PEIMBERT M, DOMÍNGUEZRAMíREZ L, FERNÁNDEZVELASCO D A. Hydrophobic repacking of the dimer interface of triosephosphate isomerase by in silico design and directed evolution[J]. Biochemistry, 2008, 47(20):5556-5565. |
[61] | TIAN J, WANG P, HUANG L, et al. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method[J]. Applied Microbiology & Biotechnology, 2013, 97(7):2997-3006. |
[62] | DU K, ZHAO J, SUN J, et al. Specific ligation of two multimeric enzymes with native peptides and immobilization with controlled molar ratio[J]. Bioconjugate Chemistry, 2017, 28(4):1166-1176. |
[63] | YEOM S J, HAN G H, KIM M, et al. Controlled aggregation and increased stability of β-glucuronidase by cellulose binding domain fusion[J]. PloS One, 2017, 12(1):e0170398-e0170409. |
[64] | SHARMA P, KAILA P, GUPTASARMA P. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly-related glycosyl hydrolases[J]. FEBS Journal, 2016, 283(23):4340-4349. |
[65] | PRACHAYASITTIKUL V L, JUNG S, BÜLOW L. NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase[J]. International Journal of Biological Sciences, 2006, 2(1):10-16. |
[66] | TONG Y, HUGHES D, PLACANICA L, et al. When monomers are preferred:a strategy for the identification and disruption of weakly oligomerized proteins[J]. Structure, 2005, 13(1):7-15. |
[67] | BOSSHART A, PANKE S, BECHTOLD M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme[J]. Angewandte Chemie, 2013, 52(37):9673-9676. |
[68] | SEETOH W, GABELL C. Disrupting the constitutive, homodimeric protein-protein interface in CK2β using a biophysical fragment-based approach[J]. Journal of the American Chemical Society, 2016, 138(43):14303-14311. |
[69] | JOSEPH P R B, POLURI K M, GANGAVARAPU P, et al. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins[J]. Biophysical Journal, 2013, 105(6):1491-1501. |
[70] | 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1):277-284. FENG X D, LV B, LI C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1):277-284. |
[71] | SCHWAB T, STERNER R. Stabilization of a metabolic enzyme by library selection in Thermus thermophilus[J]. Chembiochem:a European Journal of Chemical Biology, 2011, 12(10):1581-1588. |
[72] | STEPANENKO O V, ROGINSKⅡ D O, STEPANENKO O V, et al. Structure and stability of recombinant bovine odorant-binding protein (Ⅲ):Peculiarities of the wild type bOBP unfolding in crowded milieu[J]. PeerJ, 2016, 14(1):1642-1653. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[8] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[9] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[10] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[11] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[12] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[13] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[14] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[15] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||