CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 295-308.DOI: 10.11949/j.issn.0438-1157.20171118
Previous Articles Next Articles
CAO Chenxi1,2, ZHANG Nian1, CHU Bozhao3, CHENG Yi1
Received:
2017-08-18
Revised:
2017-10-08
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171118
Supported by:
supported by the National Natural Science Foundation of China (21576151).
曹晨熙1,2, 张辇1, 储博钊3, 程易1
通讯作者:
程易
基金资助:
国家自然科学基金项目(21576151);中石油研究基金项目。
CLC Number:
CAO Chenxi, ZHANG Nian, CHU Bozhao, CHENG Yi. Progress in research and industrial development of microstructured reactors for intensifying gas-solid catalytic reactions[J]. CIESC Journal, 2018, 69(1): 295-308.
曹晨熙, 张辇, 储博钊, 程易. 微结构反应器气固相催化过程强化的研究与工业化进展[J]. 化工学报, 2018, 69(1): 295-308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171118
[1] | JENSEN K F. Flow chemistry-microreaction technology comes of age[J]. AIChE J., 2017, 63(3):858-869. |
[2] | MOULIJN J A, KAPTEIJN F. Monolithic reactors in catalysis:excellent control[J]. Curr. Opin. Chem. Eng., 2013, 2(3):346-353. |
[3] | GOVENDER S, FRIEDRICH H. Monoliths:a review of the basics, preparation methods and their relevance to oxidation[J]. Catalysts, 2017, 7(2):62. |
[4] | KOLB G. Review:microstructured reactors for distributed and renewable production of fuels and electrical energy[J]. Chem. Eng. Process., 2013, 65:1-44. |
[5] | DELPARISH A, AVCI A K. Intensified catalytic reactors for Fischer-Tropsch synthesis and for reforming of renewable fuels to hydrogen and synthesis gas[J]. Fuel Process. Technol., 2016, 151:72-100. |
[6] | MOHARANA M K, PEELA N R, KHANDEKAR S, et al. Distributed hydrogen production from ethanol in a microfuel processor:issues and challenges[J]. Renew. Sustain. Energy Rev., 2011, 15(1):524-533. |
[7] | INOUE T, SCHMIDT M A, JENSEN K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Ind. Eng. Chem. Res., 2007, 46(4):1153-1160. |
[8] | MARKOWZ G, SCHIRRMEISTER S, ALBRECHT J, et al. Microstructured reactors for heterogeneously catalyzed gas-phase reactions on an industrial scale[J]. Chem. Eng. Technol., 2005, 28(4):459-464. |
[9] | ALMEIDA L C, SANZ O, MERINO D, et al. Kinetic analysis and microstructured reactors modeling for the Fischer-Tropsch synthesis over a Co-Re/Al2O3 catalyst[J]. Catal. Today, 2013, 215:103-111. |
[10] | JAROSCH K T, TONKOVICH A L Y, PERRY S T, et al. Microchannel reactors for intensifying gas-to-liquid technology[M]//WANG Y, HOLLADAY J D. Microreactor Technology and Process Intensification. Washington, DC:American Chemical Society, 2005:258-272. |
[11] | KOC S, AVCI A K. Reforming of glycerol to hydrogen over Ni-based catalysts in a microchannel reactor[J]. Fuel Process. Technol., 2017, 156:357-365. |
[12] | MATSON D W, MARTIN P M, STEWART D C, et al. Fabrication of microchannel chemical reactors using a metal lamination process[M]//EHRFELD W. Microreaction Technology:Industrial Prospects. Berlin, Heidelberg:Springer Berlin Heidelberg, 2000:62-71. |
[13] | 埃尔费尔德, 黑塞尔, 勒韦. 微反应器:现代化学中的新技术[M]. 骆广生, 王玉军, 吕阳成, 译. 北京:化学工业出版社, 2004:14-28. EHRFELD W, HESSEL V, LÖWE H. Microreactors:New Technology for Modern Chemistry[M]. LUO G S, WANG Y J, LÜ Y C, trans. Beijing:Chemical Industry Press, 2004:14-28. |
[14] | GAVRⅡLIDIS A, ANGELI P, CAO E, et al. Technology and applications of microengineered reactors[J]. Chem. Eng. Res. Des., 2002, 80(A1):3-30. |
[15] | KOLB G. Micro-reactors for fuel processing[M]//STOLTEN D, EMONTS B. Fuel Cell Science and Engineering:Materials, Processes, Systems and Technology. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2012:185-217. |
[16] | LAGUNA O H, GONZ LEZ CASTA O M, CENTENO M A, et al. Microreactors technology for hydrogen purification:effect of the catalytic layer thickness on CuOx/CeO2-coated microchannel reactors for the PROX reaction[J]. Chem. Eng. J., 2015, 275:45-52. |
[17] | CRUZ S, SANZ O, POYATO R, et al. Design and testing of a microchannel reactor for the PROX reaction[J]. Chem. Eng. J., 2011, 167(2/3):634-642. |
[18] | GRASSO G, SCHAEFER G, SCHUURMAN Y, et al. Methane steam reforming in microchannel reactors:technical challenges and performances benefits[J]. Top. Catal., 2011, 54(13):859. |
[19] | URIZ I, ARZAMENDI G, DI GUEZ P M, et al. CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors[J]. Chem. Eng. J., 2014, 238:37-44. |
[20] | RAMLER J J, TONKOVICH A L, TAHA R, et al. Loading/unloading of particulates to/from microchannel reactors:US2009/0252658A1[P]. 2009-10-08. |
[21] | TONKOVICH A L Y, WANG Y. Overview of early-stage microchannel reactor development at Pacific Northwest National Laboratory[M]//WANG Y, HOLLADAY J D. Microreactor Technology and Process Intensification. Washington, DC:American Chemical Society, 2005:47-65. |
[22] | RENKEN A, KIWI-MINSKER L. Microstructured catalytic reactors[M]//BRUCE C G, HELMUT K. Advances in Catalysis. New York:Academic Press, 2010:47-122. |
[23] | AVILA P, MONTES M, MIR E E. Monolithic reactors for environmental applications[J]. Chem. Eng. J., 2005, 109(1):11-36. |
[24] | MEILLE V. Review on methods to deposit catalysts on structured surfaces[J]. Appl. Catal. A Gen., 2006, 315:1-17. |
[25] | JIA L, SHEN M, WANG J. Preparation and characterization of dip-coated γ-alumina based ceramic materials on FeCrAl foils[J]. Surf. Coat. Technol., 2007, 201(16):7159-7165. |
[26] | STEFANESCU A, VAN VEEN A C, MIRODATOS C, et al. Wall coating optimization for microchannel reactors[J]. Catal. Today, 2007, 125(1):16-23. |
[27] | 张志飞, 周静红, 叶光华, 等. 涂覆液种类对FeCrAl金属载体上氧化铝涂层性质的影响[J]. 化工学报, 2016, 67(11):4742-4749. ZHANG Z F, ZHOU J H, YE G H, et al. Influence of coating solutions on properties of γ-Al2O3 washcoat over FeCrAl substrate[J]. CIESC Journal, 2016, 67(11):4742-4749. |
[28] | KOLB G, BAIER T, SCHURER J, et al. A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units(Ⅱ):Development of water-gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor[J]. Chem. Eng. J., 2008, 138(1/2/3):474-489. |
[29] | WINDES W E, ZIMMERMAN J, REIMANIS I E. Electrophoretic deposition applied to thick metal-ceramic coatings[J]. Surf. Coat. Technol., 2002, 157(2):267-273. |
[30] | BOCCACCINI A R, CHO J, ROETHER J A, et al. Electrophoretic deposition of carbon nanotubes[J]. Carbon, 2006, 44(15):3149-3160. |
[31] | 漆波. 甲烷蒸汽重整反应本征动力学及微通道反应器性能研究[D]. 重庆:重庆大学, 2009. QI B. The intrinsic kinetics of methane steam reforming and reaction performance study in micro-channel reactor[D]. Chongqing:Chongqing University, 2009. |
[32] | ALMEIDA L C, SANZ O, D'OLHABERRIAGUE J, et al. Microchannel reactor for Fischer-Tropsch synthesis:adaptation of a commercial unit for testing microchannel blocks[J]. Fuel, 2013, 110:171-177. |
[33] | JOHNSON B R, CANFIELD N L, TRAN D N, et al. Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactors[J]. Catal. Today, 2007, 120(1):54-62. |
[34] | VALENTINI M, GROPPI G, CRISTIANI C, et al. The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts[J]. Catal. Today, 2001, 69(1):307-314. |
[35] | ZHAO S, ZHANG J, WENG D, et al. A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports[J]. Surf. Coat. Technol., 2003, 167(1):97-105. |
[36] | 张忠涛, 程易, 翟绪丽, 等. 一种在金属基板上制备催化剂涂层的方法:102553596B[P]. 2013-07-31. ZHANG Z T, CHENG Y, ZHAI X L, et al. Method for preparing catalyst coating on metal substrate:102553596B[P]. 2013-07-31. |
[37] | HEINZEL A, VOGEL B, HÜBNER P. Reforming of natural gas-hydrogen generation for small scale stationary fuel cell systems[J]. J. Power Sources, 2002, 105(2):202-207. |
[38] | ROSTRUP-NIELSEN T. Manufacture of hydrogen[J]. Catal. Today, 2005, 106(1/2/3/4):293-296. |
[39] | GABRIEL K J, NOURELDIN M, EL-HALWAGI M M, et al. Gas-to-liquid (GTL) technology:targets for process design and water-energy nexus[J]. Curr. Opin. Chem. Eng., 2014, 5:49-54. |
[40] | ROSTRUP-NIELSEN J. Steam reforming of hydrocarbons. A historical perspective[J]. Stud. Surf. Sci. Catal., 2004, 147:121-126. |
[41] | ZANFIR M, GAVRⅡLIDIS A. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor[J]. Chem. Eng. Sci., 2003, 58(17):3947-3960. |
[42] | MEI H, LI C Y, JI S F, et al. Modeling of a metal monolith catalytic reactor for methane steam reforming-combustion coupling[J]. Chem. Eng. Sci., 2007, 62(16):4294-4303. |
[43] | VENKATARAMAN K, WANAT E C, SCHMIDT L D. Steam reforming of methane and water-gas shift in catalytic wall reactors[J]. AIChE J., 2003, 49(5):1277-1284. |
[44] | YUAN J, REN F, SUNDEN B. Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs[J]. Int. J. Heat Mass Transfer, 2007, 50(3/4):687-701. |
[45] | ZANFIR M, GAVRⅡLIDIS A. Parametric sensitivity in catalytic plate reactors with first-order endothermic-exothermic reactions[J]. Chem. Eng. J., 2002, 86(3):277-286. |
[46] | FRAUHAMMER J, EIGENBERGER G, VON HIPPEL L, et al. A new reactor concept for endothermic high-temperature reactions[J]. Chem. Eng. Sci., 1999, 54(15/16):3661-3670. |
[47] | ZANFIR M, GAVRⅡLIDIS A. Influence of flow arrangement in catalytic plate reactors for methane steam reforming[J]. Chem. Eng. Res. Des., 2004, 82(A2):252-258. |
[48] | LAKHETE P, JANARDHANAN V M. Modeling process intensified catalytic plate reactor for synthesis gas production[J]. Chem. Eng. Sci., 2014, 110:13-19. |
[49] | ARZAMENDI G, DIEGUEZ P M, MONTES M, et al. Methane steam reforming in a microchannel reactor for GTL intensification:a computational fluid dynamics simulation study[J]. Chem. Eng. J., 2009, 154(1/2/3):168-173. |
[50] | JIWANURUK T, PUTIVISUTISAK S, PONPESH P, et al. Comparison between parallel and checked arrangements of micro reformer for H2 production from methane[J]. Chem. Eng. J., 2015, 268:135-143. |
[51] | ZHAI X, DING S, CHENG Y, et al. CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor[J]. Int. J. Hydrogen Energ., 2010, 35(11):5383-5392. |
[52] | KARAKAYA M, AVCI A K. Microchannel reactor modeling for combustion driven reforming of iso-octane[J]. Int. J. Hydrogen Energ., 2011, 36(11):6569-6577. |
[53] | TONKOVICH A L Y, YANG B, PERRY S T, et al. From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer[J]. Catal. Today, 2007, 120(1):21-29. |
[54] | STEFANIDIS G D, VLACHOS D G. Millisecond methane steam reforming via process and catalyst intensification[J]. Chem. Eng. Technol., 2008, 31(8):1201-1209. |
[55] | STEFANIDIS G D, VLACHOS D G, KAISARE N S, et al. Methane steam reforming at microscales:operation strategies for variable power output at millisecond contact times[J]. AIChE J., 2009, 55(1):180-191. |
[56] | STEFANIDIS G D, VLACHOS D G. Intensification of steam reforming of natural gas:choosing combustible fuel and reforming catalyst[J]. Chem. Eng. Sci., 2010, 65(1):398-404. |
[57] | ARZAMENDI G, URIZ I, NAVAJAS A, et al. A CFD study on the effect of the characteristic dimension of catalytic wall microreactors[J]. AIChE J., 2012, 58(9):2785-2797. |
[58] | DING S, WU C, CHENG Y, et al. Analysis of catalytic partial oxidation of methane on rhodium-coated foam monolith using CFD with detailed chemistry[J]. Chem. Eng. Sci., 2010, 65(6):1989-1999. |
[59] | CAO C, ZHANG N, CHEN X, et al. A comparative study of Rh and Ni coated microchannel reactor for steam methane reforming using CFD with detailed chemistry[J]. Chem. Eng. Sci., 2015, 137:276-286. |
[60] | CAO C, ZHANG N, DANG D, et al. Numerical evaluation of a microchannel methane reformer used for miniaturized GTL:operating characteristics and greenhouse gases emission[J]. Fuel Process. Technol., 2017, 167:78-91. |
[61] | CAO C, ZHANG N, CHENG Y. Numerical analysis on steam methane reforming in a plate microchannel reactor:effect of washcoat properties[J]. Int. J. Hydrogen Energ., 2016, 41(42):18921-18941. |
[62] | CAO C, ZHANG N, DANG D, et al. Hybrid modeling of integrated microchannel methane reformer for miniaturized GTL application using an effectiveness factor submodel based on complex surface chemistry[J]. Chem. Eng. J., 2017, 316:715-726. |
[63] | TONKOVICH A Y, PERRY S, WANG Y, et al. Microchannel process technology for compact methane steam reforming[J]. Chem. Eng. Sci., 2004, 59(22/23):4819-4824. |
[64] | EIGENBERGER G, KOLIOS G, NIEKEN U. Thermal pattern formation and process intensification in chemical reaction engineering[J]. Chem. Eng. Sci., 2007, 62(18/19/20):4825-4841. |
[65] | GL CKLER B, GRITSCH A, MORILLO A, et al. Autothermal reactor concepts for endothermic fixed-bed reactions[J]. Chem. Eng. Res. Des., 2004, 82(2):148-159. |
[66] | KOORTZEN J G, BAINS S, KOCHER L L, et al. Modular gas-to-liquid:converting a liability into economic value[J]. Ind. Eng. Chem. Res., 2014, 53(5):1720-1726. |
[67] | LEROU J J, TONKOVICH A L, SILVA L, et al. Microchannel reactor architecture enables greener processes[J]. Chem. Eng. Sci., 2010, 65(1):380-385. |
[68] | 徐润, 胡志海, 聂红. 微反应器技术在Fischer-Tropsch合成中的应用进展[J]. 化工进展, 2016, 35(3):685-691. XU R, HU Z H, NIE H. Recent advances on Fischer-Tropsch synthesis in micro-reactor[J]. Chem. Ind. Eng. Prog., 2016, 35(3):685-691. |
[69] | BOWE M J. Plate-type reactor with a removable catalytic structure:WO2005102511A1[P]. 2005-11-03. |
[70] | VITA A, CRISTIANO G, ITALIANO C, et al. Syngas production by methane oxy-steam reforming on Me/CeO2(Me=Rh, Pt, Ni) catalyst lined on cordierite monoliths[J]. Appl. Catal. B Environ., 2015, 162:551-563. |
[71] | KATHERIA S, DEO G, KUNZRU D. Washcoating of Ni/MgAl2O4 catalyst on FeCralloy monoliths for steam reforming of methane[J]. Energy Fuels, 2017, 31(3):3143-3153. |
[72] | SAITO M, KOJIMA J, IWAI H, et al. The limiting process in steam methane reforming with gas diffusion into a porous catalytic wall in a flow reactor[J]. Int. J. Hydrogen Energ., 2015, 40(29):8844-8855. |
[73] | BLAKELEY B, SULLIVAN N. Fuel processing in a ceramic microchannel reactor:expanding operating windows[J]. Int. J. Hydrogen Energ., 2016, 41(6):3794-3802. |
[74] | JIN M H, LEE C B, LEE D W, et al. Microchannel methane steam reformers with improved heat transfer efficiency and their long-term stability[J]. Fuel, 2016, 176:86-92. |
[75] | IRANKHAH A, RAHIMI M, REZAEI M. Performance research on a methane compact reformer integrated with catalytic combustion[J]. Chem. Eng. Technol., 2014, 37(7):1220-1226. |
[76] | PENNEMANN H, BELLINGHAUSEN R, WESTERMANN T, et al. Reforming of methane in a multistage microstructured reactor[J]. Chem. Eng. Technol., 2015, 38(10):1883-1893. |
[77] | ZHAI X, CHENG Y, ZHANG Z, et al. Steam reforming of methane over Ni catalyst in micro-channel reactor[J]. Int. J. Hydrogen Energ., 2011, 36(12):7105-7113. |
[78] | ZHANG N, CHEN X, CHU B, et al. Catalytic performance of Ni catalyst for steam methane reforming in a micro-channel reactor at high pressure[J]. Chem. Eng. Process., 2017, 118:19-25. |
[79] | CHU B, ZHANG N, ZHAI X, et al. Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor[J]. J. Energy Chem., 2014, 23(5):593-600. |
[80] | DING S, CHENG Y, CHENG Y. Experimental study and modeling analysis of catalytic partial oxidation of methane with addition of CO2 and H2O using a Rh-coated foam monolith reactor[J]. Ind. Eng. Chem. Res., 2011, 50(2):856-865. |
[81] | TEZCAN I, AVCI A K. Parametric investigation of oxidative coupling of methane in a heat-exchange integrated microchannel reactor[J]. J. Chem. Technol. Biotechnol., 2015, 90(10):1827-1838. |
[82] | PARK E D, LEE D, LEE H C. Recent progress in selective CO removal in a H2-rich stream[J]. Catal. Today, 2009, 139(4):280-290. |
[83] | KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783. |
[84] | GHAIB K, NITZ K, BEN-FARES F Z. Chemical methanation of CO2:a review[J]. ChemBioEng Reviews, 2016, 3(6):266-275. |
[85] | GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable Power-to-gas:a technological and economic review[J]. Renew. Energ., 2016, 85:1371-1390. |
[86] | 李军, 朱庆山, 李洪钟. 基于甲烷化反应的催化剂颗粒设计与过程强化[J]. 化工学报, 2015, 66(8):2773-2783. LI J, ZHU Q S, LI H Z. Process intensification and catalysts particle design for CO methanation[J]. CIESC Journal, 2015, 66(8):2773-2783. |
[87] | 林玉波. 合成氨生产工艺[M]. 2版. 北京:化学工业出版社, 2011:155-159. LIN Y B. Ammonia Synthesis Technologies[M]. 2nd ed. Beijing:Chemical Industry Press, 2011:155-159. |
[88] | ERCOLINO G, ASHRAF M A, SPECCHIA V, et al. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation[J]. Appl. Energy, 2015, 143:138-153. |
[89] | ASHRAF M A, ERCOLINO G, SPECCHIA S, et al. Final step for CO syngas clean-up:comparison between CO-PROX and CO-SMET processes[J]. Int. J. Hydrogen Energ., 2014, 39(31):18109-18119. |
[90] | 李志远, 米万良, 程庆, 等. 反应条件对甲烷化法去除重整氢气中CO的影响[J]. 化工学报, 2009, 60(10):2576-2582. LI Z Y, MI W L, CHENG Q, et al. Influence of reaction conditions on removal of CO in reformate by methanation method[J]. CIESC Journal, 2009, 60(10):2576-2582. |
[91] | GÖRKE O, PFEIFER P, SCHUBERT K. Highly selective methanation by the use of a microchannel reactor[J]. Catal. Today, 2005, 110(1):132-139. |
[92] | MEN Y, KOLB G, ZAPF R, et al. Selective methanation of carbon oxides in a microchannel reactor-primary screening and impact of gas additives[J]. Catal. Today, 2007, 125(1):81-87. |
[93] | MEN Y, KOLB G, ZAPF R, et al. Selective methanation of carbon monoxide in hydrogen-rich reformate using microstructured reactor[J]. Chem. Lett., 2009, 38(8):824-825. |
[94] | 董新法, 刘文跃, 高军, 等. 微通道反应器内CO的选择性甲烷化净化[J]. 华南理工大学学报(自然科学版), 2009, 37(12):44-48. DONG X F, LIU W Y, GAO J, et al. Purification of CO via selective methanation using microchannel reactor[J]. J. South China Univ. Techno. (Nat. Sci.), 2009, 37(12):44-48. |
[95] | 刘文跃, 董新法, 林维明. 微通道反应器内Ni-Ru/ZrO2催化剂上CO选择性甲烷化[J]. 石油化工, 2009, 38(7):711-715. LIU W Y, DONG X F, LIN W M. Selective methanation of CO over Ni-Ru/ZrO2 catalyst in microchannel reactor[J]. Petrochem. Techno., 2009, 38(7):711-715. |
[96] | 高军, 董新法, 林维明. 泡沫金属微反应器内富氢合成气中CO选择性甲烷化[J]. 燃料化学学报, 2010, 38(3):337-342. GAO J, DONG X F, LIN W M. Selective catalytic methanation of CO in hydrogen-rich gas with a metal foam microreactor[J]. J. Fuel Chem. Techno., 2010, 38(3):337-342. |
[97] | KIMURA M, MIYAO T, KOMORI S, et al. Selective methanation of CO in hydrogen-rich gases involving large amounts of CO2 over Ru-modified Ni-Al mixed oxide catalysts[J]. Appl. Catal. A Gen., 2010, 379(1/2):182-187. |
[98] | GALLETTI C, SPECCHIA S, SPECCHIA V. CO selective methanation in H2-rich gas for fuel cell application:microchannel reactor performance with Ru-based catalysts[J]. Chem. Eng. J., 2011, 167(2):616-621. |
[99] | LEE C B, CHO S H, LEE D W, et al. Combination of preferential CO oxidation and methanation in hybrid MCR (micro-channel reactor) for CO clean-up[J]. Energy, 2014, 78:421-425. |
[100] | 蔺华林, 李克健, 赵利军. 煤制天然气高温甲烷化催化剂研究进展[J]. 化工进展, 2011, 30(8):1739-1743. LIN H L, LI K J, ZHAO L J. Research progress of coal-based high temperature methanation catalyst for synthetic natural gas[J]. Chem. Ind. Eng. Prog., 2011, 30(8):1739-1743. |
[101] | LIU Z, CHU B, ZHAI X, et al. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor[J]. Fuel, 2012, 95:599-605. |
[102] | LI Y, ZHANG Q, CHAI R, et al. Ni-Al2O3/Ni-foam catalyst with enhanced heat transfer for hydrogenation of CO2 to methane[J]. AIChE J., 2015, 61(12):4323-4331. |
[103] | LI Y, ZHANG Q, CHAI R, et al. Structured Ni-CeO2-Al2O3/Ni-foam catalyst with enhanced heat transfer for substitute natural gas production by syngas methanation[J]. ChemCatChem, 2015, 7(9):1427-1431. |
[104] | BROOKS K P, HU J, ZHU H, et al. Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors[J]. Chem. Eng. Sci., 2007, 62(4):1161-1170. |
[105] | HOLLADAY J D, BROOKS K P, WEGENG R, et al. Microreactor development for Martian in situ propellant production[J]. Catal. Today, 2007, 120(1):35-44. |
[106] | PENNEMANN H, KOLB G. Review:microstructured reactors as efficient tool for the operation of selective oxidation reactions[J]. Catal. Today, 2016. |
[107] | ENGELBRECHT N, CHIUTA S, EVERSON R C, et al. Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation[J]. Chem. Eng. J., 2017, 313:847-857. |
[108] | BELIMOV M, METZGER D, PFEIFER P. On the temperature control in a microstructured packed bed reactor for methanation of CO/CO2 mixtures[J]. AIChE J., 2017, 63(1):120-129. |
[109] | SCHMIDT L D, SIDDALL J, BEARDEN M. New ways to make old chemicals[J]. AIChE J., 2000, 46(8):1492-1495. |
[110] | 耿旺, 范延超. 北美页岩气化工产业链最新进展[J]. 石油化工, 2014, 43(9):1098-1104. GENG W, FAN Y C. The latest development of North America shale gas chemical industrial chain[J]. Petrochem. Techno., 2014, 43(9):1098-1104. |
[111] | NOVAKOVA E, WINTERTON N, JAROSCH K, et al. High-productivity dehydrogenation of light alkanes in a microchannel reactor[J]. Catal. Commun., 2005, 6(9):586-590. |
[112] | CARRERO C A, SCHLOEGL R, WACHS I E, et al. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts[J]. ACS Catal., 2014, 4(10):3357-3380. |
[113] | MAZANEC T, YUSCHAK T, LONG R, et al. Olefins by high intensity oxidation in microchannel reactors[C]//AIChE Spring Meeting and Global Congress on Process Safety.2007. |
[114] | YANG B, YUSCHAK T, MAZANEC T, et al. Multi-scale modeling of microstructured reactors for the oxidative dehydrogenation of ethane to ethylene[J]. Chem. Eng. J., 2008, 135:S147-S152. |
[115] | STEINFELDT N, BUYEVSKAYA O V, WOLF D, et al. Comparative studies of the oxidative dehydrogenation of propane in micro-channels reactor module and fixed-bed reactor[J]. Stud. Surf. Sci. Catal., 2001, 136:185-190. |
[116] | ZHANG Z, HAN L, CHAI R, et al. Microstructured CeO2-NiO-Al2O3/Ni-foam catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Catal. Commun., 2017, 88:90-93. |
[117] | NGUYEN T T, BUREL L, NGUYEN D L, et al. Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane[J]. Appl. Catal. A Gen., 2012, 433:41-48. |
[118] | CHU B, TRUTER L, NIJHUIS T A, et al. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVNbTeOx catalysts in a micro-channel reactor[J]. Catal. Sci. Technol., 2015, 5(5):2807-2813. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[10] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[11] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[14] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[15] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||