CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 689-698.DOI: 10.11949/0438-1157.20211319
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Wuyu WANG1,3(),Yuzhu SHI1,3,Long YAN1,Xinghua ZHANG2,Longlong MA2,Qi ZHANG2()
Received:
2021-09-10
Revised:
2021-11-29
Online:
2022-02-18
Published:
2022-02-05
Contact:
Qi ZHANG
王吴玉1,3(),史玉竹1,3,严龙1,张兴华2,马隆龙2,张琦2()
通讯作者:
张琦
作者简介:
王吴玉(1997—),男,硕士研究生,基金资助:
CLC Number:
Wuyu WANG, Yuzhu SHI, Long YAN, Xinghua ZHANG, Longlong MA, Qi ZHANG. Synthesis of valerate biofuels on supported Co-based bifunctional catalysts[J]. CIESC Journal, 2022, 73(2): 689-698.
王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698.
Add to citation manager EndNote|Ris|BibTeX
Catalyst | Si/Al molar ratio | Conversion/% | Yield(C molar fraction)/% | ||
---|---|---|---|---|---|
GVL | PA | EP | |||
10Co/HZSM-5 | 21 | 98.70 | 41.91 | 12.97 | 20.32 |
10Co/Hβ | 25 | 97.65 | 55.95 | 8.52 | 16.29 |
10Co/MCM-22 | 30 | 92.37 | 57.72 | 8.67 | 12.80 |
10Co/HY | 26 | 90.06 | 62.28 | 6.34 | 10.96 |
Table 1 The conversion of EL over catalyst with different supports
Catalyst | Si/Al molar ratio | Conversion/% | Yield(C molar fraction)/% | ||
---|---|---|---|---|---|
GVL | PA | EP | |||
10Co/HZSM-5 | 21 | 98.70 | 41.91 | 12.97 | 20.32 |
10Co/Hβ | 25 | 97.65 | 55.95 | 8.52 | 16.29 |
10Co/MCM-22 | 30 | 92.37 | 57.72 | 8.67 | 12.80 |
10Co/HY | 26 | 90.06 | 62.28 | 6.34 | 10.96 |
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 100~390 | 242 | 771 |
10Co/Hβ | 100~410 | 231 | 579 |
10Co/MCM-22 | 100~390 | 239 | 711 |
10Co/HY | 100~450 | 231 | 421 |
Table 2 The distribution of weak acids determined by NH3-TPD
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 100~390 | 242 | 771 |
10Co/Hβ | 100~410 | 231 | 579 |
10Co/MCM-22 | 100~390 | 239 | 711 |
10Co/HY | 100~450 | 231 | 421 |
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 390~650 | 491 | 623 |
10Co/Hβ | 410~650 | 494 | 504 |
10Co/MCM-22 | 390~600 | 456 | 339 |
10Co/HY | 450~600 | 531 | 130 |
Table 3 The distribution of strong acids measured by NH3-TPD
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 390~650 | 491 | 623 |
10Co/Hβ | 410~650 | 494 | 504 |
10Co/MCM-22 | 390~600 | 456 | 339 |
10Co/HY | 450~600 | 531 | 130 |
Catalyst | Conversion/% | Yield (C mole fraction)/% | |||
---|---|---|---|---|---|
GVL | PA | EP | LA(乙酰丙酸) | ||
5Co/HZSM-5 | 86.57 | 55.46 | 9.00 | 10.39 | — |
10Co/HZSM-5 | 98.70 | 41.91 | 12.97 | 20.32 | — |
15Co/HZSM-5 | 96.74 | 42.46 | 11.39 | 20.72 | — |
Table 4 The conversion of EL over catalyst with different metal loading.
Catalyst | Conversion/% | Yield (C mole fraction)/% | |||
---|---|---|---|---|---|
GVL | PA | EP | LA(乙酰丙酸) | ||
5Co/HZSM-5 | 86.57 | 55.46 | 9.00 | 10.39 | — |
10Co/HZSM-5 | 98.70 | 41.91 | 12.97 | 20.32 | — |
15Co/HZSM-5 | 96.74 | 42.46 | 11.39 | 20.72 | — |
Cycle | Yield/% | Conversion /% | ||
---|---|---|---|---|
EP | PA | GVL | ||
1 | 57.38 | 33.32 | — | 99 |
2 | 55.58 | 31.54 | — | 99 |
3 | 55.82 | 29.74 | — | 97 |
4 | 50.38 | 29.32 | 5.69 | 86.3 |
5 | 46.66 | 24.44 | 8.72 | 84.27 |
6 | 56.24 | 32.34 | — | 97 |
7 | 55.48 | 32.11 | — | 99 |
Table 5 Cyclic experiment of catalyst 10Co/HZSM-5
Cycle | Yield/% | Conversion /% | ||
---|---|---|---|---|
EP | PA | GVL | ||
1 | 57.38 | 33.32 | — | 99 |
2 | 55.58 | 31.54 | — | 99 |
3 | 55.82 | 29.74 | — | 97 |
4 | 50.38 | 29.32 | 5.69 | 86.3 |
5 | 46.66 | 24.44 | 8.72 | 84.27 |
6 | 56.24 | 32.34 | — | 97 |
7 | 55.48 | 32.11 | — | 99 |
1 | Sun P, Gao G, Zhao Z L, et al. Acidity-regulation for enhancing the stability of Ni/HZSM-5 catalyst for valeric biofuel production[J]. Applied Catalysis B: Environmental, 2016, 189: 19-25. |
2 | Yan K, Lafleur T, Wu X, et al. Cascade upgrading of γ-valerolactone to biofuels[J]. Chemical Communications (Cambridge, England), 2015, 51(32): 6984-6987. |
3 | Cai T M, Deng Q, Peng H L, et al. Synthesis of renewable C-C cyclic compounds and high-density biofuels using 5-hydromethylfurfural as a reactant[J]. Green Chemistry, 2020, 22(8): 2468-2473. |
4 | 张琦, 马隆龙, 张兴华. 生物质转化为高品位烃类燃料研究进展[J]. 农业机械学报, 2015, 46(1): 170-179. |
Zhang Q, Ma L L, Zhang X H. Progress in production of high-quality hydrocarbon fuels from biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 170-179. | |
5 | Yu Z H, Lu X B, Xiong J, et al. Transformation of levulinic acid to valeric biofuels: a review on heterogeneous bifunctional catalytic systems[J]. ChemSusChem, 2019, 12(17): 3915-3930. |
6 | Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources, Conservation and Recycling, 2000, 28(3/4): 227-239. |
7 | Buitrago-Sierra R, Serrano-Ruiz J C, Rodríguez-Reinoso F, et al. Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation[J]. Green Chemistry, 2012, 14(12): 3318. |
8 | Pan T, Deng J, Xu Q, et al. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts[J]. Green Chemistry, 2013, 15(10): 2967. |
9 | Vennestrøm P N R, Osmundsen C M, Christensen C H, et al. Beyond petrochemicals: the renewable chemicals industry[J]. Angewandte Chemie International Edition, 2011, 50(45): 10502-10509. |
10 | Wang D L, Chen Z H, Yu J, et al. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-641. |
11 | Zhang Z Z, Liu N, An C X, et al. Effect of hierarchical ZSM-5 zeolites on product distribution of low rank coal fast pyrolysis in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 407-414. |
12 | 王磊, 徐天晓, 韩燕絮, 等. Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究[J]. 燃料化学学报, 2020, 48(1): 100-107. |
Wang L, Xu T X, Han Y X, et al. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 100-107. | |
13 | Lange J P, Price R, Ayoub P, et al. Valeric biofuels: a platform of cellulosic transportation fuels[J]. Angewandte Chemie, 2010, 122(26): 4581-4585. |
14 | Gu X M, Zhang B, Liang H J, et al. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 714-722. |
15 | Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, et al. Improved hydrothermal stability of niobia-supported Pd catalysts[J]. Applied Catalysis A: General, 2011, 397(1/2): 153-162. |
16 | Hou M Y, Li G, Jin L J, et al. Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 582-588. |
17 | He J, Wu Z J, Gu Q Q, et al. Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels[J]. Angewandte Chemie International Edition, 2021, 60(44): 23713-23721. |
18 | Li C, Ni X J, Di X, et al. Aqueous phase hydrogenation of levulinic acid to γ-valerolactone on supported Ru catalysts prepared by microwave-assisted thermolytic method[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 161-170. |
19 | Dai N, Shang R, Fu M C, et al. Transfer hydrogenation of ethyl levulinate to γ-valerolactone catalyzed by iron complexes[J]. Chinese Journal of Chemistry, 2015, 33(4): 405-408. |
20 | Démolis A, Essayem N, Rataboul F. Synthesis and applications of alkyl levulinates[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1338-1352. |
21 | Sun P, Gao G, Zhao Z L, et al. Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel[J]. ACS Catalysis, 2014, 4(11): 4136-4142. |
22 | Bermudez J M, Menéndez J A, Romero A A, et al. Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals[J]. Green Chemistry, 2013, 15(10): 2786. |
23 | Serrano-Ruiz J C, Wang D, Dumesic J A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry, 2010, 12(4): 574. |
24 | Díaz U, Corma A. Layered zeolitic materials: an approach to designing versatile functional solids[J]. Dalton Transactions (Cambridge, England), 2014, 43(27): 10292-10316. |
25 | Corma A, Corell C, Pérez-Pariente J. Synthesis and characterization of the MCM-22 zeolite[J]. Zeolites, 1995, 15(1): 2-8. |
26 | Marlinda L, Al Muttaqii M, Roesyadi A, et al. Production of biofuel by hydrocracking of cerbera manghas oil using Co-Ni/HZSM-5 catalyst: effect of reaction temperature[J]. The Journal of Pure and Applied Chemistry Research, 2016, 5(3): 189-195. |
27 | Wang S R, Yin Q Q, Guo J F, et al. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts[J]. Fuel, 2013, 108: 597-603. |
28 | Zhu Z Z, Lu G Z, Zhang Z G, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method[J]. ACS Catalysis, 2013, 3(6): 1154-1164. |
29 | Feng X B, Tian M J, He C, et al. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493. |
30 | Su Y, Fu K X, Zheng Y F, et al. Catalytic oxidation of dichloromethane over Pt-Co/HZSM-5 catalyst: synergistic effect of single-atom Pt, Co3O4, and HZSM-5[J]. Applied Catalysis B: Environmental, 2021, 288: 119980. |
31 | Fei X Q, Cao S, Ouyang W L, et al. A convenient synthesis of core-shell Co3O4@ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2)[J]. Chemical Engineering Journal, 2020, 387: 123411. |
32 | Wang H T, Wu Y S, Li Y Z, et al. One-step synthesis of pentane fuel from γ-valerolactone with high selectivity over a Co/HZSM-5 bifunctional catalyst[J]. Green Chemistry, 2021, 23(13): 4780-4789. |
33 | Ren X Y, Cao J P, Zhao X Y, et al. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 190-197. |
34 | Furusawa T, Seshan K, Lefferts L, et al. Selective reduction of NO with propylene in the presence of oxygen over Co- and Pt-Co promoted HY[J]. Applied Catalysis B: Environmental, 2002, 39(3): 233-246. |
35 | Sabarish R, Unnikrishnan G. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications[J]. Carbohydrate Polymers, 2018, 199: 129-140. |
36 | Yu K, Kumar N, Roine J, et al. Synthesis and characterization of polypyrrole/H-beta zeolite nanocomposites[J]. RSC Adv., 2014, 4(62): 33120-33126. |
37 | 田丙伦, 舒玉瑛, 刘红梅, 等. Co-Mo/HZSM-5甲烷无氧芳构化催化剂上的积炭[J]. 催化学报, 2000, 21(3): 255-258. |
Tian B L, Shu Y Y, Liu H M, et al. Characterization of coke on Co-Mo/HZSM-5 catalyst for methane dehydro aromatization in the absence of oxygen[J]. Chinese Journal of Catalysis, 2000, 21(3): 255-258. | |
38 | 方辉煌, 吴历洁, 陈伟坤, 等. 生物质基含氧化合物在过渡金属碳化物上加氢脱氧研究进展[J]. 化工学报, 2021, 72(7): 3562-3575. |
Fang H H, Wu L J, Chen W K, et al. Recent progress on hydrodeoxygenation of biomass-derived oxygenates over transition metal carbides[J]. CIESC Journal, 2021, 72(7): 3562-3575. | |
39 | 马会霞, 周峰, 武光, 等. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报, 2020, 71(11): 5200-5207. |
Ma H X, Zhou F, Wu G, et al. Catalytic fast pyrolysis of biomass to aromatics over hierarchical HZSM-5[J]. CIESC Journal, 2020, 71(11): 5200-5207. | |
40 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
Fang S Q, Shi C, Li P, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. |
[1] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[2] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[3] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[4] | Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve [J]. CIESC Journal, 2022, 73(6): 2334-2351. |
[5] | Junyi LUO, Shiliang WU, Rui XIAO. Study on combustion characteristics of cycloalkanes mixed with aviation kerosene [J]. CIESC Journal, 2022, 73(2): 847-856. |
[6] | Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature [J]. CIESC Journal, 2022, 73(1): 241-254. |
[7] | FANG Huihuang, WU Lijie, CHEN Weikun, YUAN Youzhu. Recent progress on hydrodeoxygenation of biomass-derived oxygenates over transition metal carbides [J]. CIESC Journal, 2021, 72(7): 3562-3575. |
[8] | LI Xiaoxue, NIU Xiaopo, WANG Qingfa. Study on hydrodeoxygenation performance of hierarchical Pt-Ni/ZSM-5 for lignin derivatives [J]. CIESC Journal, 2021, 72(5): 2626-2637. |
[9] | NIU Xiaopo, XU Shuang, LI Xiaoxue, FENG Fuxiang, WANG Qingfa. Hollow Pt/ZSM-5 catalysts for highly selective hydrodeoxygenation of guaiacol to cycloalkanes [J]. CIESC Journal, 2021, 72(5): 2616-2625. |
[10] | QIU Shuang, XIAO Yonghou, LIU Jianhui, HE Gaohong. Enhanced NH3-SCR performance over Cu-SAPO-34 prepared by one-step synthesis: effect of Si contents [J]. CIESC Journal, 2021, 72(5): 2578-2585. |
[11] | YAN Beibei, WANG Jian, LIU Bin, CHEN Guanyi, CHENG Zhanjun. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology [J]. CIESC Journal, 2021, 72(4): 1783-1795. |
[12] | Xueming WANG,Xiaohong LI,Wenying LI. Effect of support acidity on hydrogenation of phenanthrene to alkyl adamantane over Pt/USY catalysts [J]. CIESC Journal, 2021, 72(10): 5196-5205. |
[13] | Chun YAO, Longlong HUANG, Jiangwei CHANG, Yiwang DING, Chang YU, Jieshan QIU. Optimization design of carbon molecular sieves and its I3- reduction performance [J]. CIESC Journal, 2020, 71(6): 2696-2704. |
[14] | Shuqi FANG, Chong SHI, Pan LI, Jing BAI, Chun CHANG. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5 [J]. CIESC Journal, 2020, 71(4): 1637-1645. |
[15] | Xinyi ZHANG,Rui XU,Yuqi WANG,Yu ZHANG,Fei WANG,Xun LI. Purification and characterization of novel thermo-alkaline lipase and its application [J]. CIESC Journal, 2020, 71(11): 5246-5255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||