[1] |
LI X H, MA J S, LI L L, et al. Semi-coke as solid heat carrier for low-temperature coal tar upgrading[J]. Fuel Processing Technology, 2016, 143:79-85.
|
[2] |
CHENG S, LAI D, SHI Z, et al. Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor[J]. Chinese Journal of Chemical Engineering, 2017, 25(4):507-515.
|
[3] |
GAO Z, ZHENG M, ZHANG D, et al. Low temperature pyrolysis properties and kinetics of non-coking coal in Chinese western coals[J]. Journal of the Energy Institute, 2016, 89(4):544-559.
|
[4] |
LADNER W R. The products of coal pyrolysis:properties, conversion and reactivity[J]. Fuel Processing Technology, 1988, 20:207-222.
|
[5] |
LIU J, JIANG X, SHEN J, et al. Influences of particle size, ultraviolet irradiation and pyrolysis temperature on stable free radicals in coal[J]. Powder Technology, 2015, 272:64-74.
|
[6] |
SONOYAMA N, NOBUTA K, KIMURA T, et al. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere[J]. Fuel Processing Technology, 2011, 92(4):771-775.
|
[7] |
LIU Z, GUO X, SHI L, et al. Reaction of volatiles-a crucial step in pyrolysis of coals[J]. Fuel, 2015, 154:361-369.
|
[8] |
SONG H, LIU G, ZHANG J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156:454-460.
|
[9] |
HAYASHI J, TAKAHASHI H, DOI S, et al. Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield[J]. Energy & Fuels, 2000, 14(2):400-408.
|
[10] |
JIN L, BAI X, LI Y, et al. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Processing Technology, 2016, 147:41-46.
|
[11] |
刘振宇. 煤快速热解制油技术问题的化学反应工程根源:逆向传热与传质[J]. 化工学报, 2016, 67(1):1-5. LIU Z Y. Origin of common problems in fast coal pyrolysis technologies for tar:the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1):1-5.
|
[12] |
陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10):3693-3707. CHEN Z H, GAO S Q, XU G W. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10):3693-3707.
|
[13] |
KHAN M R. A literature survey and an experimental study of coal devolatilization at mild and severe conditions:influences of heating rate, temperature, and reactor type on products yield and composition[J]. Fuel, 1989, 68(12):1522-1531.
|
[14] |
DOOLAN K R, MACKIE J C, TYLER R J. Coal flash pyrolysis:secondary cracking of tar vapours in the range 870-2000 K[J]. Fuel, 1987, 66(4):572-578.
|
[15] |
XU W C, TOMITA A. The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis[J]. Fuel Processing Technology, 1989, 21(1):25-37.
|
[16] |
ZENG D, HU S, SAYRE A N, et al. On the rank-dependence of coal tar secondary reactions[J]. Proceedings of the Combustion Institute, 2011, 33(2):1707-1714.
|
[17] |
水恒福, 张德样, 张超群. 煤焦油分离与精制[M]. 北京:化学工业出版社, 2007. SHUI H F, ZHANG D X, ZHANG C Q. Separation and Purification of Coal Tar[M]. Beijing:Chemical Industry Press, 2007.
|
[18] |
ZHANG C, WU R, XU G. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2013, 28(1):236-244.
|
[19] |
赖登国, 战金辉, 陈兆辉, 等. 内构件移动床固体热载体油页岩热解技术[J]. 化工学报, 2017, 68(10):3647-3657. LAI D G, ZHAN J H, CHEN Z H, et al. Oil shale pyrolysis by solid heat carrier in internal-structured moving bed[J]. CIESC Journal, 2017, 68(10):3647-3657.
|
[20] |
陈昭睿. 煤热解过程中热解气停留时间对热解产物的影响[D]. 杭州:浙江大学, 2015. CHEN Z R. Influence of gas residence time on product distribution of coal pyrolvsis[D]. Hangzhou:Zhejiang University, 2015.
|
[21] |
ZHANG Y, HAN Z, WU H, et al. Interactive matching between the temperature profile and secondary reactions of oil shale pyrolysis[J]. Energy & Fuels, 2016, 30(4):2865-2873.
|
[22] |
LIANG P, WANG Z, BI J. Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis[J]. Fuel Processing Technology, 2007, 88(1):23-28.
|
[23] |
ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. Journal of Analytical and Applied Pyrolysis, 1999, 50(1):31-46.
|
[24] |
HIGMAN C, VAN DER BURGT M. Gasification[M]. Gulf Professional Publishing, 2011.
|
[25] |
ZHANG K, LI Y, WANG Z, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185:701-708.
|
[26] |
VAN HEEK K H, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6):886-896.
|
[27] |
HAYASHI J, KAWAKAMI T, TANIGUCHI T, et al. Control of molecular composition of tar by secondary reaction in fluidized-bed pyrolysis of a subbituminous coal[J]. Energy & Fuels, 1993, 7(1):57-66.
|
[28] |
LAI D, SHI Y, GENG S, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173:138-145.
|
[29] |
张军民, 刘弓. 低温煤焦油的综合利用[J]. 煤炭转化, 2010, 33(3):92-96. ZHANG J M, LIU G. The comprehensive utilization of low temperature tar[J]. Coal Conversion, 2010, 33(3):92-96.
|