CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2567-2575.DOI: 10.11949/j.issn.0438-1157.20171388
Previous Articles Next Articles
CHU Fei1, CHENG Xiang1, DAI Wei1, ZHAO Xu1, WANG Fuli2
Received:
2017-10-17
Revised:
2017-12-12
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China (61503384, 61603393), the Natural Science Foundation of Jiangsu Province (BK20150199, BK20160275, BK20150204), the Fundamental Research Funds for the Central Universities (2015QNA65) and the Jiangsu Provincal Postdoctoral Fund (1501081B).
褚菲1, 程相1, 代伟1, 赵旭1, 王福利2
通讯作者:
褚菲
基金资助:
国家自然科学基金项目(61503384,61603393);江苏省自然科学基金项目(BK20150199,BK20160275,BK20150204);中央高校基本科研业务费专项资金(2015QNA65);江苏省博士后基金项目(1501081B)。
CLC Number:
CHU Fei, CHENG Xiang, DAI Wei, ZHAO Xu, WANG Fuli. Prediction approach for terminal batch process quality based on process transfer[J]. CIESC Journal, 2018, 69(6): 2567-2575.
褚菲, 程相, 代伟, 赵旭, 王福利. 基于过程迁移的间歇过程终点质量预报方法[J]. 化工学报, 2018, 69(6): 2567-2575.
[1] | LUO L J, BAO S Y, MAO J F, et al. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 150(Suppl. C):9-22. |
[2] | YACOUB F, MACGREGOR J F. Product optimization and control in the latent variable space of nonlinear PLS models[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 70(1):63-74. |
[3] | SOUZA F A A, ARAÚJO R, MENDES J M. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152(Suppl. C):69-79. |
[4] | DARNAG R, MINAOUI B, FAKIR M. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression[J]. Arabian Journal of Chemistry, 2017, 10(Suppl. 1):S600-S608. |
[5] | GOLSHAN M, MACGREGOR J F, MHASKAR P. Latent variable model predictive control for trajectory tracking in batch processes:alternative modeling approaches[J]. Journal of Process Control, 2011, 21(9):1345-1358. |
[6] | ZHANG Y, FEARN T. A linearization method for partial least squares regression prediction uncertainty[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 140(Suppl. C):133-140. |
[7] | GE Z Q, SONG Z H, ZHAO L P, et al. Two-level PLS model for quality prediction of multiphase batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130(Suppl. C):29-36. |
[8] | GE Z Q. Quality prediction and analysis for large-scale processes based on multi-level principal component modeling strategy[J]. Control Engineering Practice, 2014, 31(Suppl. C):9-23. |
[9] | WANG X C, WANG P, GAO X J, et al. On-line quality prediction of batch processes using a new kernel multiway partial least squares method[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 158(Suppl. C):138-145. |
[10] | 汤健,柴天佑,余文,等. 在线KPLS建模方法及在磨机负荷参数集成建模中的应用[J]. 自动化学报,2013,39(5):471-486. TANG J, CHAI T Y, YU W, et al. On-line KPLS algorithm with application to ensemble modeling parameters of mill load[J]. Journal of Automatica Sinica, 2013, 39(5):471-486. |
[11] | BIDAR B, SADEGHI J, SHAHRAKI F, et al. Data-driven soft sensor approach for online quality prediction using state dependent parameter models[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162(Suppl. C):130-141. |
[12] | LU J D, YAO K, GAO F R. Process similarity and developing new process models through migration[J]. AIChE Journal, 2009, 55(9):2318-2328. |
[13] | LUO L K, YAO Y, GAO F R. Iterative improvement of parameter estimation for model migration by means of sequential experiments[J]. Computers & Chemical Engineering, 2015, 73:128-140. |
[14] | SALVADOR G M,MACGREGOR J F,THEODORA K. Product transfer between sites using Joint-Y PLS[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 79(1):101-114. |
[15] | TOMBA E, FACCO P, BEZZO F, et al. Combining fundamental knowledge and latent variable techniques to transfer process monitoring models between plants[J]. Chemometrics & Intelligent Laboratory Systems, 2012, 116(1):67-77. |
[16] | JIA R D, MAO Z H, WANG F L, et al. Batch-to-batch optimization of cobalt oxalate synthesis process using modifier-adaptation strategy with latent variable model[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 140(24):73-85. |
[17] | AUMI S, CORBETT B, CLARKE P T, et al. Data-driven model predictive quality control of batch processes[J]. AIChE Journal, 2013, 59(8):2852-2861. |
[18] | 赵春晖,王福利,姚远,等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报,2010,36(3):366-374. ZHAO C H, WANG F L, YAO Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3):366-374. |
[19] | ZHAO C H. A quality-relevant sequential phase partition approach for regression modeling and quality prediction analysis in manufacturing processes[J]. IEEE Transactions on Automation Science & Engineering, 2014, 11(4):983-991. |
[20] | 郑蓉建,潘丰. 基于PLS-LSSVM的谷氨酸发酵产物浓度预测建模[J]. 化工学报, 2017, 68(3):976-983. ZHENG R J, PAN F. Prediction of product concentration in glutamate fermentation process using partial least squares and least square support vector machine[J]. CIESC Journal, 2017, 68(3):976-983. |
[21] | JAECKLE C M, MACGREGOR J F. Product transfer between plants using historical process data[J]. AIChE Journal, 2010, 46(10):1989-1997. |
[22] | NOMIKOS P, MACGREGOR J F. Multi-way partial least squares in monitoring batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):97-108. |
[23] | 石怀涛,刘建昌,谭帅,等. 基于混合KPLS-FDA的过程监控和质量预报方法[J]. 控制与决策, 2013, 28(1):141-146. SHI H T, LIU J C, TAN S, et al. Process monitoring and quality prediction method based on hybrid KPLS-FDA[J]. Control and Decision, 2013, 28(1):141-146. |
[24] | JIA R D, MAO Z H, WANG F L, et al. Self-tuning final product quality control of batch processes using kernel latent variable model[J]. Chemical Engineering Research and Design, 2015, 94:119-130. |
[25] | 刘昊知,胥布工,高福荣. 基于时序模型迁移的间歇过程监测建模方法[J]. 控制与决策,2015,30(10):1885-1889. LIU H Z, XU B G, GAO F R. Modeling method of monitoring for batch process based on time series model migration[J]. Control and Decision, 2015, 30(10):1885-1889. |
[26] | 李康,王福利,何大阔,等. 基于数据的湿法冶金全流程操作量优化设定补偿方法[J]. 自动化学报,2017,43(6):1047-1055. LI K, WANG F L, HE D K, et al. A data-based compensation method for optimal setting of hydrometallurgical process[J]. Acta Automatica Sinica, 2017, 43(6):1047-1055. |
[27] | 王锡昌,王普,高学金,等. 一种新的基于MKPLS的间歇过程质量预测方法[J]. 仪器仪表学报,2015,36(5):1155-1162. WANG X C, WANG P, GAO X J, et al. New quality prediction method of batch processes based on MKPLS[J]. Journal of Scientific Instrument, 2015, 36(5):1155-1162. |
[28] | ZHANG H Y, TIAN X M, DENG X G. Batch process monitoring based on multiway global preserving kernel slow feature analysis[J]. IEEE Access, 2017, 5(99):2696-2710. |
[29] | 常鹏,王普,高学金. 基于统计量模式分析的T-KPLS间歇过程故障监控[J]. 化工学报,2015,66(1):265-271. CHANG P, WANG P, GAO X J. Fault monitoring batch process based on statistics pattern analysis of T-KPLS[J]. CIESC Journal, 2015, 66(1):265-271 |
[30] | JAECKLE C M, MACGREGOR J F. Industrial applications of product design through the inversion of latent variable models[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(2):199-210. |
[31] | 贾润达,毛志忠,王福利. 基于KPLS模型的间歇过程产品质量控制[J]. 化工学报,2013,64(4):1332-1339. JIA R D, MAO Z Z, WANG F L. KPLS model based product quality control for batch processes[J]. CIESC Journal, 2013, 64(4):1332-1339. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 429
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||