CIESC Journal ›› 2018, Vol. 69 ›› Issue (3): 1071-1080.DOI: 10.11949/j.issn.0438-1157.20171478
Previous Articles Next Articles
GAO Yue, SU Chong, LI Hongguang
Received:
2017-07-04
Revised:
2017-07-06
Online:
2018-03-05
Published:
2018-03-05
Supported by:
supported by the Beijing Outstanding Talent Training Project (2015000020124G041) and the National Natural Science Foundation of China (61603023).
高月, 宿翀, 李宏光
通讯作者:
宿翀
基金资助:
北京市优秀人才培养项目(2015000020124G041);国家自然科学基金项目(61603023)。
CLC Number:
GAO Yue, SU Chong, LI Hongguang. Sequence-decision PID parameter tuning approach towards control system decoupling[J]. CIESC Journal, 2018, 69(3): 1071-1080.
高月, 宿翀, 李宏光. 一种面向控制系统解耦的序列决策PID参数整定方法[J]. 化工学报, 2018, 69(3): 1071-1080.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171478
[1] | Tanaskovica m, Fagianob l, Novarac c, et al. Data-driven control of nonlinear systems:an on-line direct approach[J]. Automatica, 2017, 75:1-10. |
[2] | Wei x j, Mottershead J E. Block-decoupling vibration control using eigenstructure assignment[J]. Mechanical Systems and Signal Processing, 2016, 74:11-28. |
[3] | Ram Y M, Mottershead J E. Multiple-input active vibration control by partial pole placement using the method of receptances[J]. Mechanical Systems and Signal Processing, 2013, 40:727-735. |
[4] | 白辰, 樊垚, 任章, 等. 基于模糊神经网络的MIMO系统自适应解耦控制[J]. 北京航空航天大学学报, 2015, 41(11):2131-2136. BAI C, FAN Y, REN Z, et al. Adaptive decoupling control of a MIMO system based on fuzzy neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2131-2136. |
[5] | 陈苏平, 孙优贤. 多变量过程的鲁棒解耦[J]. 自动化学报, 1995, 21(2):214-220. CHEN S P, SUN Y X. Robust decoupling of multivariable processes[J]. Acta Automatica Sinica, 1995, 21(2):214-220. |
[6] | Juan C, He Z F, Qi X. A new control method for MIMO first order time delay non-square systems[J]. Journal of Process Control, 2011, 21(4):538-546. |
[7] | Chiranjeeevi T, Vijetha I V V, Chakravarthi B, et al. Tuning and control of multi-variable systems[J]. Int. J. of Electronics and Electrical Engineering, 2014, 2(4):309-320. |
[8] | Shen Y L, Sun Y X, Xu W. Centralized PI/PID controller design for multivariable processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(25):10439-10447. |
[9] | 栾小丽, 王志强, 刘飞. 多变量非方系统集中式PI控制器设计[J]. 控制与决策, 2016, 31(5):811-816. LUAN X L, WANG Z Q, LIU F. Centralized PI control for multivariable non-square systems[J]. Control and Decision, 2016, 31(5):811-816. |
[10] | 王飞跃. 平行控制:数据驱动的计算控制方法[J]. 自动化学报, 2013, 38(4):293-302. WANG F Y. Parallel control:a method for data-driven and computational control[J]. Acta Automatica Sinica, 2013, 38(4):293-302. |
[11] | 王元卓, 靳小龙, 程学旗. 网络大数据:现状与展望[J]. 计算机学报, 2013, 36(6):1125-1138. WANG Y Z, JIN X L, CHENG X Q. Network big data present and future[J]. Chinese Journal of Computers, 2013, 36(6):1125-1138. |
[12] | 柴天佑. 工业过程控制系统研究现状与发展方向[J]. 中国科学, 2016, 8:1003-1015. CHAI T Y. Research status and development trend of industrial process control system[J]. Scientia Sinica Informationis, 2016, 8:1003-1015. |
[13] | Galit S, Soumya R, Juan M V E, et al. The elephant in the room:predictive performance of PLS models[J]. Journal of Business Research, 2016, 69:4552-4564. |
[14] | 汤健, 贾美英, 刘卓, 等. 基于偏最小二乘算法的高维谱数据特征选择[J]. 控制工程, 2015, 22(6):1127-1130. TANG J, JIA M Y, LIU Z, et al. Feature selection approach of high dimension spectral data based-on partial least squares algorithm[J]. Control Engineering of China, 2015, 22(6):1127-1130. |
[15] | Schlittgen r, Christian M R, Marko S, et al. Segmentation of PLS path models by iterative reweighted regressions[J]. Journal of Business Research, 2016, 69:4583-4592. |
[16] | You w j, Yang z j, Ji g l. PLS-based recursive feature elimination for high-dimensional small sample[J]. Knowledge-Based Systems, 2014, 55:15-28. |
[17] | Zhang n, Shetty d. An effective LS-SVM-based approach for surface roughness prediction in machined surface[J]. Neurocomputing, 2016, 198:35-39. |
[18] | SHANG C, YANG F, HUANG D X, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3):223-233. |
[19] | Hossain m s, GOng Z C, Ismail Z, et al. Artificial neural networks for vibration based inverse parametric identifications:a review[J]. Applied Soft Computing, 2017, 52:203-219. |
[20] | Zakaryazad A, Duman E. A profit-driven artificial neural network(ANN) with applications to fraud detection and direct marketing[J]. Neurocomputing, 2016, 75:121-131. |
[21] | Leema N, Khanna H N, Kannan A. Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets[J]. Applied Soft Computing, 2016, 49:834-844. |
[22] | 欧阳华兵. 基于BP神经网络的面向STEP-NC加工工步序列生成[J]. 计算机集成制造系统, 2015, 21(7):1810-1819. OUYANG H B. STEP-NC oriented generation of workingsteps sequence based on BP neural networks[J]. Computer Integrated Manufacturing Systems, 2015, 21(7):1810-1819. |
[23] | Oluwarotimi W S, Grace M A, Sangaiahc A K, et al. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN[J]. Expert Systems with Applications, 2017, 68:163-172. |
[24] | Chen J Y, Chen H J, Wu Z H, et al. Forecasting smog-related health hazard based on social media and physical sensor[J]. Information System, 2017, 64:281-291. |
[25] | Nima H N, Guermazi A, Frank W R, et al. Prediction of medial tibiofemoral compartment joint space loss progression using volumetric cartilage measurements:data from the FNIH OA biomarkers consortium[J]. Eur. Radiol., 2017, 27:464-473. |
[26] | Shwetha H R, Kumar D N. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:40-55. |
[27] | Be?ikçi E B, Arslan O, Turan O, et al. An artificial neural network based decision support system for energy efficient ship operations[J]. Computers & Operations Research, 2016, 66:393-401. |
[28] | Zou J, Chang Q, Arinez b G, et al. Dynamic production system diagnosis and prognosis using model-based data-driven method[J]. Expert Systems With Applications, 2017, 80:200-209. |
[29] | Xu P, Han H J, Shi Z. Development of QSBR models for anoxic biodegradability of polycyclic aromatic hydrocarbons by using SMLR and BP-ANN[J]. Separation and Purification Technology, 2017, 178:1-5. |
[30] | 栾小丽, 陈强, 刘飞. 高维多变量系统集中式PI控制器设计[J]. 控制与决策, 2014, 29(4):605-610. LUAN X L, CHEN Q, LIU F. Centralized PI control for high dimensional multivariable systems[J]. Control and Decision, 2014, 29(4):605-610. |
[31] | Hu J H, Zhang Y, Chen X H, et al. Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number[J]. Knowledge-Based Systems, 2013, 43:21-29. |
[32] | TAN S, Mavrovouniotis M L. Reducing data dimensionality through optimizing neural network inputs[J]. AIChE J., 1995, 41(6):1471-1480. |
[33] | 郝立军, 杨燕华. 模糊解耦控制在精馏塔的应用[J]. 石油化工自动化, 2005, 6:27-29. HAO L J, YANG Y H. The fuzzy decoupling control used in rectifying tower[J]. Automation In Petro-chemical Industry, 2005, 6:27-29. |
[34] | Li M X, Jia Y M, Matsuno F. Attenuating diagonal decoupling with robustness for velocity-varying 4WS vehicles[J]. Control Engineering Practice, 2016, 56:49-59. |
[35] | Wang Y G, Pang X F, Piao Z L, et al. Intelligent decoupling PID control for the forced-circulation evaporation system[J]. Chinese Journal of Chemical Engineering, 2015, 23:2075-2086. |
[36] | Garrido J, Vazquez F, Morilla F. Multivariable PID control by inverted decoupling:application to the Benchmark PID[J]. IFAC Proceedings, 2012, 45(3):352-357. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[7] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[8] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[15] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||