[1] |
WISE B M, GALLAGHER N B, BUTLER S W, et al. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process[J]. Journal of Chemometrics, 1999, 13(3/4):379-396.
|
[2] |
CHERRY G A, QIN S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172.
|
[3] |
GE Z, SONG Z. Semiconductor manufacturing process monitoring based on adaptive substatistical PCA[J]. IEEE Transactions on Semiconductor Manufacturing, 2010, 23(1):99-108.
|
[4] |
张成, 李元. 基于统计模量分析间歇过程故障检测方法研究[J]. 仪器仪表学报, 2013, 34(9):2103-2110. ZHANG C, LI Y. Study on the fault-detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 34(9):2103-2110.
|
[5] |
RATO T J, REIS M S. Advantage of using decorrelated residuals in dynamic principal component analysis for monitoring large-scale systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(38):13685-13698.
|
[6] |
KRESTA J V, MACGREGOR J F, MARLIN T E. Multivariate statistical monitoring of process operating performance[J]. Canadian Journal of Chemical Engineering, 1991, 69(1):35-47.
|
[7] |
ZHAO S J, ZHANG J, XU Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7):763-772.
|
[8] |
LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1):204-210.
|
[9] |
LEE J M, YOO C K, SANG W C, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
|
[10] |
ROSIPAL R, TREJO L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research, 2001, 2(3):97-123.
|
[11] |
ZHANG Y, LI S, HU Z. Improved multi-scale kernel principal component analysis and its application for fault detection[J]. Chemical Engineering Research & Design, 2012, 90(9):1271-1280.
|
[12] |
ZHANG Y, HU Z. Multivariate process monitoring and analysis based on multi-scale KPLS[J]. Chemical Engineering Research & Design, 2011, 89(12):2667-2678.
|
[13] |
SHI J Z, JIE Z, YONG M X. Monitoring of processes with multiple operating modes through multiple principal component analysis models[J]. Industrial & Engineering Chemistry Research, 2004, 43(22):7025-7035.
|
[14] |
NG Y S, SRINIVASAN R. An adjoined multi-model approach for monitoring batch and transient operations[J]. Computers & Chemical Engineering, 2009, 33(4):887-902.
|
[15] |
CHANG K Y, VILLEZ K, LEE I B, et al. Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor[J]. Biotechnology & Bioengineering, 2007, 96(4):687-701.
|
[16] |
GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. Journal of Chemometrics, 2010, 23(12):636-650.
|
[17] |
NATARAJAN S, SRINIVASAN R. Multi-model based process condition monitoring of offshore oil and gas production process[J]. Chemical Engineering Research & Design, 2010, 88(5):572-591.
|
[18] |
YU J, QIN S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7):1811-1829.
|
[19] |
HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J].IEEE Transactions on Semiconductor Manufacturing, 2007, 20(4):345-354.
|
[20] |
ZHOU Z, WEN C, YANG C. Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(1):70-79.
|
[21] |
HE Q P, WANG J. Principal component based k-nearest-neighbor rule for semiconductor process fault detection[C]//Proceedings of the American Control Conference. Washington, USA, 2008:1606-1611.
|
[22] |
VERDIER G, FERREIRA A. Fault detection with an adaptive distance for the k-nearest neighbors rule[C]//International Conference on Computers & Industrial Engineering. Troyes, France:IEEE, 2009:1273-1278.
|
[23] |
冯立伟, 张成, 李元, 等. 基于局部马氏距离的加权k近邻故障检测方法[J]. 通化师范学院学报, 2017, 38(4):57-63. FENG L W, ZHANG C, LI Y, et al. Local Mahalanobis distance based weighted k nearest neighbor rule for fault detection[J]. Journal of Tonghua Normal University, 2017, 38(4):57-63.
|
[24] |
LANE S, MARYIN E B, KOOIJMANS R, et al. Performance monitoring of a multi-product semi-batch process[J]. Journal of Process Control, 2001, 11(1):1-11.
|
[25] |
WANG G, LIU J, ZHANG Y, et al. A novel multi-mode data processing method and its application in industrial process monitoring[J]. Journal of Chemometrics, 2015, 29(2):126-138.
|
[26] |
马贺贺, 胡益, 侍洪波. 基于距离空间统计量分析的多模态过程无监督故障检测[J]. 化工学报, 2012, 63(3):873-880. MA H H, HU Y, SHI H B. Unsupervised fault detection for multimode processes using distance space statistics analysis[J]. CIESC Journal, 2012, 63(3):873-880.
|
[27] |
LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28(9):1837-1847.
|
[28] |
TAN S, WANG F, PENG J, et al. Multimode process monitoring based on mode identification[J]. Industrial & Engineering Chemistry Research, 2011, 51(1):374-388.
|
[29] |
刘毅, 王海清. Pensim仿真平台在青霉素发酵过程的应用研究[J]. 系统仿真学报, 2006, 18(12):3524-3527. LIU Y, WANG H Q. Pensim simulator and its application in penicillin fermentation process[J]. Journal of System Simulation, 2006, 18(12):3524-3527.
|
[30] |
WANG G, LIU J, LI Y, et al. Fault detection based on diffusion maps and k nearest neighbor diffusion distance of feature space[J]. Journal of Chemical Engineering of Japan, 2015, 48(9):756-765.
|