[1] |
GE Z. Review on data-driven modeling and monitoring for plant-wide industrial processes[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 171:16-25.
|
[2] |
ZHANG S, ZHAO C. Stationarity test and Bayesian monitoring strategy for fault detection in nonlinear multimode processes[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 168:45-61.
|
[3] |
GE Z, SONG Z, DING S X, et al. Data mining and analytics in the process industry:the role of machine learning[J]. IEEE Access, 2017, 5(99):20590-20616.
|
[4] |
文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9):1285-1299. WEN C L, LÜ F Y, BAO Z J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9):1285-1299.
|
[5] |
王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10):4300-4308. WANG L, DENG X G, XU Y, et al. Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10):4300-4308.
|
[6] |
韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149.
|
[7] |
MACGREGOR J, CINAR A. Monitoring fault diagnosis fault-tolerant control and optimization:data driven methods[J]. Computers & Chemical Engineering, 2012, 47(52):111-120.
|
[8] |
SHEN Y, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
|
[9] |
葛志强, 杨春节, 宋执环. 基于MEWMA-PCA的微小故障检测方法研究及其应用[J]. 信息与控制, 2007, 36(5):650-656. GE Z Q, YANG C J, SONG Z H. Research and application of small shifts detection method based on MEWMA-PCA[J]. Information and Control, 2007, 36(5):650-656.
|
[10] |
李娟, 周东华, 司小胜, 等. 微小故障诊断方法综述[J]. 控制理论与应用, 2012, 29(12):1517-1529. LI J, ZHOU D H, SI X S, et al. Review of incipient fault diagnosis methods[J]. Control Theory and Applications, 2012, 29(12):1517-1529.
|
[11] |
WOLD S. Exponentially weighted moving principal components analysis and projections to latent structures[J]. Chemometrics & Intelligent Laboratory Systems, 1994, 23(1):149-161.
|
[12] |
邱天, 白晓静, 郑茜予, 等. 多元指数加权移动平均主元分析的微小故障检测[J]. 控制理论与应用, 2014, 31(1):19-26. QIU T, BAI X J, ZHENG Q Y, et al. Incipient fault detection of multivariate exponentially weighted moving average principal component analysis[J]. Control Theory and Applications, 2014, 31(1):19-26.
|
[13] |
葛志强, 宋执环, 杨春节. 基于MCUSUM-ICA-PCA的微小故障检测[J]. 浙江大学学报(工学版), 2008, 42(3):373-377. GE Z Q, SONG Z H, YANG C J. Small shift detection based on MCUSUM-ICA-PCA[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(3):373-377.
|
[14] |
HARMOUCHE J, DELPHA C, DIALLO D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis:Part Ⅱ[J]. Signal Processing, 2014, 94(1):278-287.
|
[15] |
ZHANG S, ZHAO C, GAO F. Incipient fault detection for multiphase batch processes with limited batches[J]. IEEE Transactions on Control Systems Technology, 2017, PP(99):1-15.
|
[16] |
ZHAO C, GAO F. A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information[J]. Control Engineering Practice, 2017, 65:70-82.
|
[17] |
GE Z, YANG C, SONG Z. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9):2245-2255.
|
[18] |
TONG C, SONG Y, YAN X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Industrial & Engineering Chemistry Research, 2013, 52(29):9897-9907.
|
[19] |
JIANG Q, YAN X. Nonlinear plant-wide process monitoring using MIspectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32:38-50.
|
[20] |
LI W, ZHAO C, GAO F. Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2683-2692.
|
[21] |
ZHAO C, WANG F, ZHANG Y. Nonlinear process monitoring based on kernel dissimilarity analysis[J]. Control Engineering Practice, 2009, 17(1):221-230.
|
[22] |
朱喜华, 李颖晖, 刘聪, 等. 基于自适应核主元分析的EHA系统传感器故障检测[J]. 推进技术, 2014, 35(6):838-845. ZHU X H, LI Y H, LIU C, et al. Sensor fault detection for EHA system based on adaptive kernel principal component analysis[J]. Journal of Propulsion Technology, 2014, 35(6):838-845.
|
[23] |
赵忠盖, 刘飞. 基于稀疏核主元分析的在线非线性过程监控[J]. 化工学报, 2008, 59(7):1773-1777. ZHAO Z G, LIU F. On-line nonlinear process monitoring based on sparse kernel principal component analysis[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7):1773-1777.
|
[24] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[25] |
BASSEVILLE M. On-board component fault detection and isolation using the statistical local approach[J]. Automatica. 1997, 34(11):1391-1415.
|
[26] |
KRUGER U, KUMAR S, LITTLER T. Improved principal component monitoring using the local approach[J]. Automatica, 2007, 43(9):1532-1542.
|
[27] |
GE Z Q, ZHANG M G, SONG Z H. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5):676-688.
|
[28] |
LI N, YANG Y. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(1):318-329.
|
[29] |
郑鑫, 田学民, 张汉元. 基于动态稀疏保局投影的故障检测方法[J]. 化工学报, 2016, 67(3):833-838. ZHENG X, TIAN X M, ZHANG H Y. Fault detection method based on dynamic sparse locality preserving projections[J]. CIESC Journal, 2016, 67(3):833-838.
|
[30] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[31] |
YE N, MCAVOY T J, KOSANOVICH K A, et al. Plant-wide control using an inferential approach[C]//American Control Conference. IEEE, 2009:1900-1904.
|
[32] |
GRBOVIC M, LI W, XU P, et al. Decentralized fault detection and diagnosis via sparse PCA based decomposition and maximum entropy decision fusion[J]. Journal of Process Control, 2012, 22(4):738-750.
|