[1] |
FARUK D O. A hybrid neural network and ARIMA model for water quality time series prediction[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4):586-594.
|
[2] |
XIONG T, BAO Y, HU Z, et al. Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms[J]. Information Sciences, 2015, 305:77-92.
|
[3] |
KHOSRAVI A, MAZLOUMI E, NAHAVANDI S, et al. Prediction intervals to account for uncertainties in travel time prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2):537-547.
|
[4] |
NIX D A, WEIGEMD A S. Estimating the mean and variance of the target probability distribution[C]//IEEE World Congress on IEEE International Conference on Neural Networks. 1994:55-60
|
[5] |
LI P, DIMITRIS N. Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions[J]. Journal of Statistical Planning and Inference, 2014, 177:1-27.
|
[6] |
TRUCIOS C, HOTTA L K. Bootstrap prediction in univariate volatility models with leverage effect[J]. Mathematics and Computers in Simulation, 2016, 120:91-103.
|
[7] |
党宏涛, 杜祖良, 任宏文, 等. 基于Bootstrap方法的平台惯导系统标定参数重复性区间预测[J]. 中国惯性技术学报, 2013, 21(3):411-414. DANG H T, DU Z L, REN H W, et al. Repeatability interval prediction for calibrated parameters of INS based on Bootstrap method[J]. Journal of Chinese Inertial Technology, 2013, 21(3):411-414.
|
[8] |
WANG C, NIU M, SONG Y H, et al. Pareto optimal prediction intervals of electricity price[J]. IEEE Transactions on Power Systems, 2016, 32:1.
|
[9] |
李知艺, 丁剑鹰, 吴迪, 等. 电力负荷区间预测的集成极限学习机方法[J]. 华北电力大学学报, 2014, 41(2):78-88. LI Z Y, DING J Y, WU D, et al. An ensemble model of the extreme learning machine for load interval prediction[J]. Journal of North China Electric Power University, 2014, 41(2):78-88.
|
[10] |
WAN C, XU Z, PINSON P, et al. Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE Transactions on Power Systems, 2014, 29(29):1033-1044.
|
[11] |
VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995:52-123.
|
[12] |
SHRIVASTAVA N A, KHOSRAVI A, PANIGRAHI B K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2):322-331.
|
[13] |
ZHAO J H, DONG Z Y, XU Z, et al. A statistical approach for interval forecasting of the electricity price[J]. IEEE Transactions on Power Systems, 2008, 23(2):267-276.
|
[14] |
DE B K, DE B J, SUYKENS J A. Approximate confidence and prediction intervals for least squares support vector regression[J]. IEEE Transactions on Neural Networks, 2010, 22(1):110-120.
|
[15] |
CHENG Q, TEZCAN J, CHENG J. Confidence and prediction intervals for semiparametric mixed-effect least squares support vector machine[J]. Pattern Recognition Letters, 2014, 40(40):88-95.
|
[16] |
KHOSRAVI A, NAHAVANDI S, CREIGHTON D, et al. Lower upper bound estimation method for construction of neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks, 2011, 22(3):337-46.
|
[17] |
HAO Q, SRINIVASAN D, KHOSRAVI A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73(7):916-925.
|
[18] |
ZHANG G, WU Y, WONG K P, et al. An advanced approach for construction of optimal wind power prediction intervals[J]. IEEE Transactions on Power Systems, 2015, 30(5):2706-2715.
|
[19] |
HAO Q, SRINIVASAN D, KHOSRAVI A. Short-Term load and wind power forecasting using neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(2):303-315.
|
[20] |
KAVOUSI-FARD A, KHOSRAVI A, NAHAVANDI S. A New fuzzy-based combined prediction interval for wind power forecasting[J]. IEEE Transactions on Power Systems, 2015, 31(1):1-9.
|
[21] |
WAN C, XU Z, PINSON P, et al. Optimal prediction intervals of wind power generation[J]. IEEE Transactions on Power Systems, 2014, 29(3):1166-1174.
|
[22] |
HOSEN M, KHOSRAVI A, NAHAVANDI S, et al. Prediction interval-based neural network modelling of polystyrene polymerization reactor-a new perspective of data-based modelling[J]. Chemical Engineering Research & Design, 2014, 92(11):2041-2051.
|
[23] |
韩帅, 李树刚. 基于区间预测模型的流感趋势预测[J]. 计算机仿真, 2014, 31(9):237-242. HAN S, LI S G. Influenza trends forecast based on interval prediction model[J]. Computer Simulation, 2014, 31(9):237-242.
|
[24] |
SCHLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319.
|
[25] |
李海波, 柴天佑, 岳恒. 浮选工艺指标KPCA-ELM软测量模型及应用[J]. 化工学报, 2012, 63(9):2892-2898. LI H B, CHAI T Y, YUE H. Soft sensor of technical indices based on KPCA-ELM and application for flotation process[J]. CIESC Journal, 2012, 63(9):2892-2898.
|
[26] |
STEFATOS G, HAMZA A B. Dynamic independent component analysis approach for fault detection and diagnosis[J]. Expert Systems with Applications, 2010, 37(12):8606-8617.
|
[27] |
KANO M, HASEBE S, HASHIMOTO I, et al. Evolution of multivariate statistical process control:application of independent component analysis and external analysis[J]. Computers and Chemical Engineering, 2004, 28(6/7):1157-1166.
|
[28] |
MIANJI F A, ZHANG Y. Robust hyperspectral classification using relevance vector machine[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(6):2100-2112.
|
[29] |
TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3):211-244.
|
[30] |
杨树仁, 沈洪远. 基于相关向量机的机器学习算法研究与应用[J]. 计算技术与自动化, 2010, 29(1):43-47. YANG S R, SHEN H Y. Research and application of machine learning algorithm based on relevance vector machine[J]. Computing Technology and Automation, 2010, 29(1):43-47.
|