CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3441-3448.DOI: 10.11949/0438-1157.20190349
• Process system engineering • Previous Articles Next Articles
Lei YU(),Xiaogang DENG(),Yuping CAO,Kaiqi LU
Received:
2019-04-03
Revised:
2019-06-10
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xiaogang DENG
通讯作者:
邓晓刚
作者简介:
于蕾(1994—),女,硕士研究生,基金资助:
CLC Number:
Lei YU, Xiaogang DENG, Yuping CAO, Kaiqi LU. Fault detection method of unequal-length batch process based on VGDTW-MCVA[J]. CIESC Journal, 2019, 70(9): 3441-3448.
于蕾, 邓晓刚, 曹玉苹, 路凯琪. 基于变量分组DTW-MCVA的不等长间歇过程故障检测方法[J]. 化工学报, 2019, 70(9): 3441-3448.
Add to citation manager EndNote|Ris|BibTeX
故障 | 描述 |
---|---|
1 | 底物流加速率在100~400 h施加+0.004/100 h斜坡干扰 |
2 | 通风速率在100~400 h施加+0.5/100 h斜坡干扰 |
3 | 搅拌速率在100~400 h施加+3/100 h斜坡干扰 |
Table 1 Fault description
故障 | 描述 |
---|---|
1 | 底物流加速率在100~400 h施加+0.004/100 h斜坡干扰 |
2 | 通风速率在100~400 h施加+0.5/100 h斜坡干扰 |
3 | 搅拌速率在100~400 h施加+3/100 h斜坡干扰 |
序号 | 变量号 |
---|---|
1 | 1、2、3 |
2 | 4、7、8 |
3 | 5、6、9、10 |
Table 2 Variable Grouping
序号 | 变量号 |
---|---|
1 | 1、2、3 |
2 | 4、7、8 |
3 | 5、6、9、10 |
故障 | DTW-MCVA | VGDTW-MPCA | VGDTW-MCVA | |||
---|---|---|---|---|---|---|
T 2 | SPE | T 2 | SPE | T 2 | SPE | |
1 | 67.79 | 61.07 | 64.00 | 70.00 | 75.84 | 80.54 |
2 | 94.63 | 85.91 | 88.00 | 78.67 | 95.97 | 91.95 |
3 | 94.63 | 93.96 | 80.67 | 80.00 | 83.22 | 97.32 |
Table 3 Detection rate of 3 faults/%
故障 | DTW-MCVA | VGDTW-MPCA | VGDTW-MCVA | |||
---|---|---|---|---|---|---|
T 2 | SPE | T 2 | SPE | T 2 | SPE | |
1 | 67.79 | 61.07 | 64.00 | 70.00 | 75.84 | 80.54 |
2 | 94.63 | 85.91 | 88.00 | 78.67 | 95.97 | 91.95 |
3 | 94.63 | 93.96 | 80.67 | 80.00 | 83.22 | 97.32 |
故障 | DTW-MCVA | VGDTW-MPCA | VGDTW-MCVA | |||
---|---|---|---|---|---|---|
T 2 | SPE | T 2 | SPE | T 2 | SPE | |
1 | 101 | 111 | 105 | 96 | 89 | 84 |
2 | 61 | 78 | 69 | 80 | 61 | 65 |
3 | 61 | 62 | 80 | 81 | 83 | 57 |
Table 4 Detection sample of 3 faults
故障 | DTW-MCVA | VGDTW-MPCA | VGDTW-MCVA | |||
---|---|---|---|---|---|---|
T 2 | SPE | T 2 | SPE | T 2 | SPE | |
1 | 101 | 111 | 105 | 96 | 89 | 84 |
2 | 61 | 78 | 69 | 80 | 61 | 65 |
3 | 61 | 62 | 80 | 81 | 83 | 57 |
1 | Ge Z Q , Song Z H , Gao F R . Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
2 | Yang C M , Hou J . Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine[J]. Neurocomputing, 2016, 190(2): 117-123. |
3 | 高学金, 黄梦丹, 王普, 等 . 基于多约束DTW的MPCA间歇过程监测方法[J]. 北京工业大学学报, 2018, 44(3): 393-400. |
Gao X J , Huang M D , Wang P , et al . Batch process monitoring method based on multi-way principal component analysis and limited-DTW[J]. Journal of Beijing University of Technology, 2018, 44(3): 393-400. | |
4 | Yin S , Ding S X , Abandan Sari A H , et al . Data-driven monitoring for stochastic systems and its application on batch process[J]. International Journal of Systems Science, 2013, 44(7): 1366-1376. |
5 | Liu Y Q , Pan Y P , Wang Q L , et al . Statistical process monitoring with integration of data projection and one-class classification[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149(8): 1-11. |
6 | Naes T , Tomic O . Multi-block regression based on combinations of orthogonalisation PLS regression and canonical correlation analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 124(1): 32-42. |
7 | Zhao X Q , Wang T . Tensor dynamic neighborhood preserving embedding algorithm for fault diagnosis of batch process[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162(1): 94-103. |
8 | Cai B P , Zhao Y B , Liu H L , et al . A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5590-5600. |
9 | Deng X G , Tian X M . Sparse kernel locality preserving projection and its application in nonlinear process fault detection[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 163-170. |
10 | Song Y , Jiang Q C , Yan X F . Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map[J]. Journal of Central South University, 2015, 22(2): 601-609. |
11 | Tong C , Lan T , Shi X . Ensemble modified independent component analysis for enhanced non-Gaussian process monitoring[J]. Control Engineering Practice, 2017, 58(9): 34-41. |
12 | Erdem O , Ceyhan E , Varli Y . A new correlation coefficient for bivariate time-series data[J]. Physica A: Statistical Mechanics and Its Applications 2011, 414(10): 274-284. |
13 | Kano M , Tanaka S , Hasebe S , et al . Monitoring independent components for fault detection[J]. AIChE Journal, 2010, 49(4): 969-976. |
14 | Huang J P , Yan X F . Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD[J]. ISA Transactions, 2018, 73(6): 257-267. |
15 | 王振雷, 江伟, 王昕 . 基于多块MICA-PCA的全流程过程监控方法[J]. 控制与决策, 2018, 33(2): 269-274. |
Wang Z L , Jiang W , Wang X . Plant-wide process monitoring based on multiblock MICA-PCA[J]. Control and Decision, 2018, 33(2): 269-274. | |
16 | Lee J M , Yoo C K , Lee I B . On-line batch process monitoring using a consecutively updated multiway principal component analysis model[J]. Computers & Chemical Engineering, 2003, 27(12): 1903-1912. |
17 | Rato T J , Blue J , Pinaton J , et al . Translation-invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing[J]. IEEE Transactions on Automation Science & Engineering, 2017, 14(2): 894-904. |
18 | 赵忠盖, 刘飞.基于稀疏核主元分析的在线非线性过程监控[J]. 化工学报, 2008, 59(7): 1773-1777. |
Zhao Z , Liu F . On-line nonlinear process monitoring based on sparse kennel principal component analysis[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1773-1777. | |
19 | 王磊, 邓晓刚, 徐莹, 等 . 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10): 4300-4308. |
Wang L , Deng X G , Xu Y , et al . Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10): 4300-4308. | |
20 | 汤健, 贾美英, 刘卓 . 基于偏最小二乘算法的高维谱数据特征选择[J]. 控制工程, 2015, 22(6): 1127-1130. |
Tang J , Jia M Y , Liu Z , et al . Feature selection approach of high dimension spectral data based on partial least squares algorithm[J]. Control Engineering of China, 2015, 22(6): 1127-1130. | |
21 | Cao Y P , Hu Y P , Deng X G , et al . Quality-relevant batch process fault detection using a multiway multi-subspace CVA method[J]. IEEE Access, 2017, 5(10): 2169-3536. |
22 | Juricek B C , Seborg D E , Larimore W E . Fault detection using canonical variate analysis[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 458-474. |
23 | Liu Y , Wang F , Chang Y , et al . Multiple hypotheses testing-based operating optimality assessment and nonoptimal cause identification for multiphase uneven-length batch process[J]. Industrial & Engineering Chemistry Research, 2016, 55(2): 6133-6144. |
24 | Spooner M , Kold D , Kulahci M . Selecting local constraint for alignment of batch process data with dynamic time warping[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 167(8): 161-170. |
25 | Lu B , Xu S , Stuber J , et al . Constrained selective dynamic time warping of trajectories in three dimensional batch data[J]. Chemommetrics and Intelligent Laboratory Systems. 2016, 159(10): 138-150. |
26 | Gollmer K , Posten C . Detection of distorted pattern using dynamic time warping algorithm and application for supervision of bioprocess[J]. IFAC Proceedings Volumes, 1995, 28(12): 538-549. |
27 | 高翔, 王纲, 马纪虎 . 基于可变多元统计模型的故障诊断方法[J]. 上海海事大学学报, 2001, 22(3): 51-55. |
Gao X , Wang G , Ma J H . The approach of fault diagnosis method based on variable multivariate statistical model[J]. Journal of Shanghai Maritime University, 2001, 22(3): 51-55. | |
28 | 李元, 王纲, 曹锐 . 基于MPCA与DTW的间歇反应过程的性能监视及故障诊断[J]. 沈阳化工大学学报, 2003, 17(4): 285-289. |
Li Y , Wang G , Cao R . Performance monitoring and fault diagnosis based on the intermittent reaction process of MPCA and DTW [J]. Journal of Shenyang Chemical University, 2003, 17(4): 285-289. | |
29 | 肖应旺, 徐保国 . 基于改进的MPCA与DTW方法及其在批过程故障诊断中的应用[J]. 计算机与应用化学, 2005, 22(5): 344-348. |
Xiao Y W , Xu B G . Batch process monitoring and fault detection based on an improved MPCA and DTW[J]. Computers and Applied Chemistry, 2005, 22(5): 344-348. | |
30 | Birol G , Ündey C , Parulekar S J , et al . A morphologically structured model for penicillin production[J]. Biotechnology and Bioengineering, 2002, 77(5): 538-552. |
31 | 刘毅, 王海清 . Pensim仿真平台在青霉素发酵过程的应用研究[J]. 系统仿真学报, 2006, 18(12): 3524-3527. |
Liu Y , Wang H Q . Pensim simulation platform in the application of penicillin fermentation process research [J]. Journal of System Simulation, 2006, 18(12): 3524-3527. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[3] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[4] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[5] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[6] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[7] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[8] | Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection [J]. CIESC Journal, 2021, 72(8): 4227-4238. |
[9] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[10] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[11] | Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA [J]. CIESC Journal, 2020, 71(5): 2151-2163. |
[12] | Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm [J]. CIESC Journal, 2020, 71(3): 1254-1263. |
[13] | XU Jing,WANG Zhenlei,WANG Xin. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections [J]. CIESC Journal, 2020, 71(12): 5655-5663. |
[14] | Zhongjian SUN,Bo YANG,Chu QI,Hongguang LI. An extended logical analysis of data approach to fault detections of industrial hybrid systems [J]. CIESC Journal, 2020, 71(11): 5237-5245. |
[15] | Wei CHAI, Longhang GUO, Binbin CHI. Interval model for predicting effluent quality variables of wastewater treatment plants [J]. CIESC Journal, 2019, 70(9): 3449-3457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||