[1] |
HEEK K H V. Progress of coal science in the 20th century[J]. Fuel, 2000, 79(1):1-26.
|
[2] |
MATHEWS J P, CHAFFEE A L. The molecular representations of coal-a review[J]. Fuel, 2012, 96(1):1-14.
|
[3] |
王宝俊, 张玉贵, 谢克昌. 量子化学计算在煤的结构与反应性研究中的应用[J]. 化工学报, 2003, 54(4):477-488. WANG B J, ZHANG Y G, XIE K C. Application of quantum chemistry calculation to investigation on coal structure and reactivity[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4):447-488.
|
[4] |
刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44(9):1431-1438. LIU Z Y. Advancement in coal chemistry:structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9):1431-1435.
|
[5] |
GIVEN P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39(2):147-153.
|
[6] |
WENDER I. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews-Science and Engineering, 1976, 14(1):97-129.
|
[7] |
SHINE J H. From coal to single-stage and two-stage products:a reactive model of coal structure[J]. Fuel, 1984, 63(9):1187-1196.
|
[8] |
XIANG J H, ZENG F G, LIANG H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2011, 39(7):481-488.
|
[9] |
蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6):641-648. LIN H L, LI K J, ZHANG X W. Structure characterization and model construction of Shangwan coal and it's inertinite concentrated[J]. Journal of Fuel Chemistry & Technology, 2013, 41(6):641-648.
|
[10] |
LI W, ZHU Y M, CHEN S B, et al. Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9):647-652.
|
[11] |
YAN G C, ZHANG Z Q, YAN K F. Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2013, 111(1):147-156.
|
[12] |
BHOI S, BANERJEE T, MOHANTY K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136(6):326-333.
|
[13] |
ZHAN J H, WU R C, LIU X X, et al. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134(9):283-292.
|
[14] |
WANG H J, FENG Y H, ZHANG X X, et al. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel, 2015, 145:241-248.
|
[15] |
李军, 冯杰, 李文英. 神府东胜煤镜质组和惰质组的热化学反应差异[J]. 物理化学学报, 2009,25(7):1311-1319. LI J, FENG J, LI W Y. Thermochemical reaction representation of Shenfu Dongshen inertinite and vitrinite[J]. Acta Physico-Chimica Sinica, 2009, 25(7):1311-1319.
|
[16] |
相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(7):481-488. XIANG J H, ZENG F G, LIANG H Z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2011, 39(7):481-488.
|
[17] |
相建华, 曾凡桂, 李彬, 等. 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报, 2013, 41(4):391-399. XIANG J H, ZENG F G, LI B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2013, 41(4):391-399.
|
[18] |
JIA J B, WANG Y, LI F H, et al. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method[J]. Spectroscopy & Spectral Analysis, 2014, 34(1):47-51.
|
[19] |
WANG J P, LI G Y, GUO R, et al. Theoretical and experimental insight into coal structure:establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2017, 31(1):124-132.
|
[20] |
石志祥, 李彦恒, 段飘飘, 等. 宁东煤田中部2号煤煤相特征[J]. 煤炭与化工, 2013, 36(12):18-20. SHI Z X, LI Y H, DUAN P P, et al. Coal facies characteristics of the No.2 coal seam from Ningdong coalfield central[J]. Coal & Chemical Industry, 2013, 36(12):18-20.
|
[21] |
潘强, 杨红波, 任淑荣. 宁东矿区煤质与气化技术的匹配性研究[J]. 洁净煤技术, 2013, 19(2):36-38. PAN Q, YANG H B, REN S R. Adaptability of coal gasification technologies to raw coal in Shendong mining area[J]. Clean Coal Technology, 2013, 19(2):36-38.
|
[22] |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Wallingford CT:Gaussian Inc., 2009.
|
[23] |
ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008, 120:215-241.
|
[24] |
ReaxFF 2016[CP]. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
|
[25] |
CAO X, CHAPPELL M A, SCHIMMELMANN A, et al. Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy[J]. International Journal of Coal Geology, 2013, 108:53-64.
|
[26] |
KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3):259-265.
|
[27] |
ZHANG Z Q, KANG Q N, WEI S, et al. Large scale molecular model construction of Xishan bituminous coal[J]. Energy & Fuels, 2017, 31:1310-1317.
|
[28] |
MATHEWS J P, HATCHER P G, SCARONI A W. Proposed model structures for upper freeport and Lewiston-Stockton vitrinites[J]. Energy & Fuels, 2001, 15(4):863-873.
|
[29] |
WU D, LIU G J, SUN R Y, et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction[J]. Energy & Fuels, 2013, 27(10):5823-5830.
|
[30] |
BANDOPADHYAY A K. Determination of quartz content for Indian coals using an FTIR technique[J]. International Journal of Coal Geology, 2010, 81(1):73-78.
|
[31] |
YANG W K. Thermo-degradation mechanism and hydrocarbon productivity of humic coal[J]. Oil Gas Geol., 1987, 8(1):26-37.
|
[32] |
SHI K Y, GUI X H, TAO X X, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29(6):3566-3572.
|
[33] |
XIANG J H, ZENG F G, LI B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry & Technology, 2013, 41(4):391-400.
|
[34] |
VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5):719-833.
|
[35] |
CHENOWETH K, VAN DUIN A C. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. Journal of Physical Chemistry A, 2008, 112(5):1040-1053.
|
[36] |
CASTRO-MARCANO F, KAMAT A M, RUSSO M F, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion & Flame, 2012, 159(3):1272-1285.
|
[37] |
WOLINSKI K, HAACKE R, HINTON J F, et al. Methods for parallel computation of SCF NMR chemical shifts by GIAO method:efficient integral calculation, multi-Fock algorithm, and pseudodiagonalization[J]. Journal of Computational Chemistry, 1997, 18(6):816-825.
|