CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 2217-2225.DOI: 10.11949/j.issn.0438-1157.20171235
Previous Articles Next Articles
LI Chengwei1, LU Hao1, ZHANG Anchao1, XING Weibo1, HU Song2, XIANG Jun2
Received:
2017-09-11
Revised:
2017-10-28
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the National Natural Science Foundation of China (51676064, 51306046, and 51576086), and the Young Core Instructor Project in the Higher Education Institutions of Henan Province (2016GGJS-038).
李成伟1, 路好1, 张安超1, 邢微波1, 胡松2, 向军2
通讯作者:
路好, 张安超
基金资助:
国家自然科学基金项目(51676064,51306046,51576086);河南省高等学校青年骨干教师项目(2016GGJS-038)。
CLC Number:
LI Chengwei, LU Hao, ZHANG Anchao, XING Weibo, HU Song, XIANG Jun. Wet process of elemental mercury removal using Ag@AgCl-BiOCl photocatalyst under fluorescent light irradiation[J]. CIESC Journal, 2018, 69(5): 2217-2225.
李成伟, 路好, 张安超, 邢微波, 胡松, 向军. 荧光灯辐照下Ag@AgCl-BiOCl光催化剂湿法脱汞研究[J]. 化工学报, 2018, 69(5): 2217-2225.
[1] | PACYNA E G, PACYNA J M, SUNDSETH K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499. |
[2] | 袁媛, 张军营, 李小龙, 等. TiO2-V2O5纳米纤维光催化氧化烟气中的Hg0[J]. 化工学报, 2012, 63(S2):69-75. YUAN Y, ZHANG J Y, LI X L, et al. Photocatalytic oxidation of Hg0 in flue gas using TiO2-V2O5nanofibers[J]. CIESC Journal, 2012, 63(S2):69-75. |
[3] | 杜雯, 殷立宝, 禚玉群, 等. 100 MW燃煤电厂非碳基吸附剂喷射脱汞实验研究[J]. 化工学报, 2014, 65(11):4413-4419. DU W, YIN L B, ZHUO Y Q, et al. Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant[J]. CIESC Journal, 2014, 65(11):4413-4419. |
[4] | 张君, 李志超, 段钰锋, 等. 燃煤电厂汞迁移排放及脱除[J]. 燃烧科学与技术, 2015, 21(5):415-420. ZHANG J, LI Z C, DUAN Y F, et al. Migrate emission and removal of mercury in coal-fired power plant[J]. Journal of Combustion Science and Technology, 2015, 21(5):415-420. |
[5] | 乔少华, 晏乃强, 陈杰, 等. MnOx/a-Al2O3催化氧化燃煤烟气中Hg0的试验研究[J]. 中国环境科学, 2009, 29(3):237-241. QIAO S H, YAN N Q, CHEN J, et al. Catalytic oxidation of elemental mercury in flue gas on MnOx/α-Al2O3[J]. China Environmental Science, 2009, 29(3):237-241. |
[6] | ZHAN F, LI C, ZENG G, et al. Experimental study on oxidation of elemental mercury by UV/Fenton system[J]. Chemical Engineering Journal, 2013, 232(9):81-88. |
[7] | LIU Y X, ZHANG J, SHENG C D, et al. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal, 2010, 162(3):1006-1011. |
[8] | ZHAO Y, HAO R L, ZHANG P, et al. An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8[J]. Fuel, 2014, 136(10):113-121. |
[9] | HUTSON N D, KRZYZYNSKA R, SRIVASTAVA R K. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial and Engineering Chemistry Research, 2008, 47(16):5825-5831. |
[10] | WANG H Q, ZHOU S Y, XIAO L, et al. Titania nanotubes-a unique photocatalyst and adsorbent for elemental mercury removal[J]. Catalyst Today, 2011, 175:202-208. |
[11] | LI Y, WU C Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environmental Science and Technology, 2006, 40:6444-6448. |
[12] | WU J, LI C E, ZHAO X Y, et al. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Applied Catalysis B:Environmental, 2015, 176/177:559-569. |
[13] | YUAN Y, ZHANG J Y, LI H L, et al. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chemical Engineering Journal, 2012, 192(2):21-28. |
[14] | CHEN Z Y, MANNAVA D P, MATHUR V K. Mercury oxidization in dielectric barrier discharge plasma system[J]. Industrial and Engineering Chemistry Research, 2006, 45(17):6050-6055. |
[15] | BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 113:6490-6492. |
[16] | TANG Y, SUBRAMANIAM V P, LAU T H, et al. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution[J]. Applied Catalysis B:Environmental, 2011, 106(3/4):577-585. |
[17] | YAO X X, LIU X H, ZHU D, et al. Synthesis of cube-like Ag/AgCl plasmonic photocatalyst with enhanced visible light photocatalytic activity[J]. Catalysis Communications, 2015, 59:151-155. |
[18] | HU C, GUO J, QU J H, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir, 2007, 23(9):4982-4987. |
[19] | DONG R F, TIAN B Z, ZHANG J L, et al. AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability[J]. Catalysis Communications, 2013, 38(15):16-20. |
[20] | LI G T, WONG K H, ZHANG X W, et al. Degradation of acid orange 7 using magnetic AgBr under visible light:the roles of oxidizing species[J]. Chemosphere, 2009, 76(9):1185-1191. |
[21] | 崔玉民, 李慧泉. 铋基光催化材料[M]. 北京:化学工业出版社, 2015:64-75. CUI Y M, LI H Q. Bismuth-based Photocatalytic Material[M]. Beijing:Chemical Industry Press, 2015:64-75. |
[22] | ZHANG A C, XING W B, ZHANG D. A novel low-cost method for Hg0 removal from flue gas by visible-light-driven BiOX (X=Cl, Br, I) photocatalysts[J]. Catalysis Communications, 2016, 87:57-61. |
[23] | AO Y H, TANG H, WANG P F, et al. Deposition of Ag@AgCl onto two dimensional square-like BiOCl nanoplates for high visible-light photocatalytic activity[J]. Materials Letters, 2014, 131:74-77. |
[24] | HUANG D Q, MA J F, YU L M, et al. AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of Rhodamine B[J]. Separation and Purification Technology, 2015, 156:789-794. |
[25] | ZHANG A C, ZHANG L X, CHEN X Z, et al. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light[J]. Applied Surface Science, 2016, 392:1107-1116. |
[26] | 沈伯雄, 蔡记, 陈建宏, 等. KBr和KI改性黏土脱除模拟烟气中的单质汞[J]. 化工学报, 2014, 65(2):711-717. SHEN B X, CAI J, CHEN J X, et al. Removal of element mercury from simulated flue gas by clay modified with KBr and KI[J]. CIESC Journal, 2014, 65(2):711-717. |
[27] | LIU Y X, ZHANG J, PAN J F, et al. Investigation on removal of NO from SO2-containing simulated flue gas by UV/Fenton-like reaction[J]. Energy Fuels, 2012, 26(9):5430-5436. |
[28] | ZHANG A C, ZHANG L X, ZHU Q F, et al. Photocatalytic oxidation removal of Hg0 by ternary Ag@AgCl/Ag2CO3 hybrid under fluorescent light[J]. Fuel Processing Technology, 2017, 159:222-231. |
[29] | XIONG W, ZHAO Q, LI X, et al. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity[J]. Catalysis Communications, 2011, 16(1):229-233. |
[30] | HAN L, WANG P, ZHU C, et al. Facile solvothermal synthesis of cube-like Ag@AgCl:a highly efficient visible light photocatalyst[J]. Nanoscale, 2011, 3(7):2931-2935. |
[31] | SUN M, WANG Y, SHAO Y, et al. Fabrication of a novel Z-scheme g-C3N4/Bi4O7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants[J]. Journal of Colloid and Interface Science, 2017, 501:123-132. |
[32] | LI C W, ZHANG A C, ZHANG L X, et al. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation[J]. Applied Surface Science, 2018, 433:914-926. |
[33] | CAO T T, LI, Z, XIONG Y, et al. Silica-silver nanocomposites as regenerable sorbents for Hg0 removal from flue gases[J]. Environmental Science and Technology, 2017, 51:11909-11917. |
[34] | WANG P Y, HU S, XIANG J, et al. Analysis of mercury species over CuO-MnO2-Fe2O3/g-Al2O3 catalysts by thermal desorption[J]. Proceedings of the Combustion Institute, 2015, 35:2847-2853. |
[35] | LIANG Y H, LIN S L, HU J S, et al. Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9 and photocatalytic degradation under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2014, 383/384:231-238. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 621
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 355
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||