[1] |
ZHANG X Y, ZHANG Y D. Tissue engineering applications of three-dimensional bioprinting[J]. Cell Biochem. Biophys., 2015, 72:777-782.
|
[2] |
顾奇, 郝捷, 陆阳杰, 等. 生物三维打印的研究进展[J]. 中国科学:生命科学, 2015, 45(5):439-449. GU Q, HAO J, LU Y J, et al. Three-dimensional bio-printing[J]. Sci. China Life Sci., 2015, 45(5):439-449.
|
[3] |
DIASA A A, CARDOSO T M G, CARDOSO R M, et al. Paper-based enzymatic reactors for batch injection analysis of glucose on 3D printed cell coupled with amperometric detection[J]. Sensors and Actuators B:Chemical, 2016, 226:196-203.
|
[4] |
FISCHER C, FRAIWAN A, CHOI S. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring[J]. Biosensors and Bioelectronics, 2016, 79:193-197.
|
[5] |
MANDRYCKY C, WANG Z J, KIM K Y, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34:422-434.
|
[6] |
GUPTA M K, MENG F, JOHNSON B N, et al. 3D printed programmable release capsules[J]. Nano Letter, 2015, 15(8):5321-5329.
|
[7] |
KAZENWADEL F, BIEGERT E, WOHLGEMUTH J. A 3D-printed modular reactor setup including temperature and pH control for the compartmentalized implementation of enzyme cascades[J]. Eng. Life Sci., 2016, 16:560-567.
|
[8] |
HOSSAIN S M Z, LUCKHAM R E, SMITH A M, et al. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks[J]. Anal. Chem., 2009, 81:5474-5483.
|
[9] |
PETRI I, ANNI M, NIKLAS S. Printing technologies for biomolecule and cell-based applications[J]. International Journal of Pharmaceutics, 2015, 494:585-592.
|
[10] |
MORE A S, LEBARBE T, MAISONNEUVE L, et al. Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes[J]. Eur. Polym. J., 2013, 49:823-833.
|
[11] |
ALAGI P, HONG S C. Vegetable oil-based polyols for sustainable polyurethanes[J]. Macromol. Res., 2015, 23(12):1079-1086.
|
[12] |
AKINDOYO J O, BEG M D H, GHAZALI S, et al. Polyurethane types, synthesis and applications -a review[J]. RSC Adv., 2016, 6:114453-114482.
|
[13] |
UHRICH D, LQNGERMANN J V. Preparation and characterization of enzyme compartments in UV-cured polyurethane-based materials and their application in enzymatic reactions[J]. Frontiers in Microbiology, 2017, 8:1-9.
|
[14] |
徐雪, 钟尚富, 朱延安, 等. 新型TMPLA水性聚氨酯分散体的合成及助成膜性能[J]. 化工学报, 2016, 67(5):2124-2130. XU X, ZHONG S F, ZHU Y A, et al. Synthesis and film-forming performance of novel polyurethane aqueous dispersions[J]. CIESC Journal, 2016, 67(5):2124-2130.
|
[15] |
PFISTER D P, XIA Y, LAROCK R C. Recent advances in vegetable oil-based polyurethanes[J]. Chem. Sus. Chem., 2011, 4:703-717
|
[16] |
LU Y S, LAROCK R C. Soybean oil-based, aqueous cationic polyurethane dispersions:synthesis and properties[J]. Progress in Organic Coatings, 2010, 69:31-37.
|
[17] |
GURUNATHAN T, CHUNG J S. Physicochemical properties of amino-silane-terminated vegetable oil-based waterborne polyurethane nanocomposites[J]. ACS Sustainable Chem. Eng., 2016, 4:4645-4653.
|
[18] |
MADBOULY S A, XIA Y, KESSLER M R. Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions[J]. Macromolecules, 2013, 46:4606-4616.
|
[19] |
BORJA F A, ARANTXA E. Salting-out waterborne catiomeric polyurethanes for drugs encapsulation and delivery[J]. Macromol. Chem. Phys., 2015, 216:1914-1924.
|
[20] |
LIU K, ZHANAG S P, SU Z G, et al. Preparation and characterization of castor oil-based cationic waterborne polyurethane[J]. Advanced Materials Research, 2015, 1090(3):3-7.
|
[21] |
OU C W, SU C H, JENG U S, et al. Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion[J]. ACS Appl. Mater Interfaces, 2014, 6:5685-5694.
|
[22] |
GURUNATHAN T, ARUKULAB R, CHUNG J S, et al. Development of environmental friendly castor oil-based waterborne polyurethane dispersions with polyaniline[J]. Polym. Adv. Technol., 2016, 27:1535-1540.
|
[23] |
LIU K, SU Z G, MIAO S D, et al. Enzymatic waterborne polyurethane towards a robust and environmentally friendly antibiofouling coating[J]. RSC Adv., 2016, 6:31698-31704.
|
[24] |
LIU K, SU Z G, MIAO S D, et al. UV-curable enzymatic antibacterial waterborne polyurethane coating[J]. Biochemical Engineering Journal, 2016, 113:107-113.
|
[25] |
ZHANG L T, WU S T, BUTHE A, et al. Poly(ethylene glycol) conjugated enzyme with enhanced hydrophobic compatibility for self-cleaning coatings[J]. ACS Applied Materials and Interfaces, 2012, 4(7):5981-5987.
|
[26] |
PATEL T N, PARK A H A, BANTA S. Periplasmic expression of carbonic anhydrase in Escherichia coli:a new biocatalyst for CO2 hydration[J]. Biotechnol. Bioeng., 2013, 110:1865-1873.
|
[27] |
FACRE N, AHMAD Y, PIERRE A. Biomaterials obtained by gelation of silica precursor with CO2 saturated water containing a carbonic anhydrase enzyme[J]. J. Sol-Gel. Sci. Technol., 2011, 58:442-451.
|
[28] |
FAVER N, CHRIST M L, PIERRE A C. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate[J]. J. Mol. Catal. B:Enzyme, 2009, 60:163-170.
|
[29] |
PANDA S S, PANDA B P, MOHANTY S, et al. Synthesis and properties of castor oil-based waterborne polyurethane cloisite 30B nanocomposite coatings[J]. J. Coat. Technol. Res., 2017, 14(2):377-394.
|
[30] |
PARK J M, KIM M, LEE H J, et al. Enhancing the production of Rhodobacter sphaeroides-derived physiologically active substances using carbonic anhydrase-immobilized electrospun nano-fibers[J]. Biomacromolecules, 2012, 13:3780-3786.
|