[1] |
PETRI C A. Kommunikation mit automaten[D]. Bonn:Institut für Instrumentelle Mathematik, 1962.
|
[2] |
WANG Y N, YE J F, XU G J, et al. Novel hierarchical fault diagnosis approach for smart power grid with information fusion of multi-data resources based on fuzzy petri net[C]//2014 IEEE International Conference on Fuzzy Systems. 2014:1183-1189.
|
[3] |
SHEN V R L, LAI H Y, LAI A F. The implementation of a smartphone-based fall detection system using a high-level fuzzy Petri net[J]. Applied Soft Computing, 2015, 26(C):390-400.
|
[4] |
林晓琳. 基于模糊Petri网的专家系统实现与应用[D]. 北京:北京化工大学, 2009. LIN X L. Implementation and application of expert system based on fuzzy Petri net[D]. Beijing:Beijing University of Chemical Technology, 2009.
|
[5] |
TAO B, WEI H C, ZHEN L. Software hazard analysis for nuclear digital protection system by colored petri net[J]. Annals of Nuclear Energy, 2017, 110:486-491.
|
[6] |
付阶辉. 基于Petri网的故障诊断方法研究[D]. 南京:东南大学, 2004. FU J H. Research on fault diagnosis method based on Petri net[D]. Nanjing:Southeast University, 2004.
|
[7] |
IFTAR A. Supervisory control of manufacturing systems modeled by timed Petri nets[J]. IFAC Papersonline, 2016, 49(31):120-124
|
[8] |
DISTEFANO S, LONGO F, SCARPA M. Marking dependency in non-Markovian stochastic Petri nets[J]. Performance Evaluation, 2017, 110:22-47.
|
[9] |
GAO M M, ZHOU M C, HUANG X G, et al. Fuzzy reasoning Petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2003, 33(3):314-324.
|
[10] |
GONG M F, SONG H H, TAN J W, et al. Fault diagnosis of motor based on mutative scale back propagation net evolving fuzzy Petri nets[C]//2017 IEEE. 2017:3826-3829
|
[11] |
BASILE F. Fault diagnosis and prognosis in Petri nets by using a single generalized marking estimation[C]//Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. 2009:1396-1401.
|
[12] |
LIU H C, LIN Q L, REN M L. Fault diagnosis and cause analysis using fuzzy evidential reasoning approach and dynamic adaptive fuzzy Petri nets[J]. Computers & Industrial Engineering, 2013, 66(4):899-908.
|
[13] |
甘正佳, 甘正宁, 成新明. 基于概率Petri网的柴油机故障诊断方法研究[J]. 长沙铁道学院学报, 2003, 21(1):79-83. GAN Z J, GAN Z N, CHENG X M. Study on diesel engine fault diagnosis method based on probabilistic Petri net[J]. Journal of Changsha Railway Institute, 2003, 21(1):79-83.
|
[14] |
赵熙临, 周建中, 刘辉. 基于概率Petri网的故障诊断模型研究[J]. 计算机工程与应用, 2008, 44:224-227. ZHAO X L, ZHOU J Z, LIU H. Research on fault diagnosis model based on probabilistic Petri net[J]. Computer Engineering and Application, 2008, 44:224-227.
|
[15] |
盛晟, 肖明清, 赵亮亮, 等. 故障Petri网的概率变迁方法研究[J]. 仪器仪表学报, 2014, 35(3):715-720. SHENG S, XIAO M Q, ZHAO L L, et al. Study on the probability transitions of fault Petri nets[J]. Journal of Instrumentation, 2014, 35(3):715-720.
|
[16] |
韩光臣, 孙树栋, 司书宾, 等. 基于模糊概率Petri网系统的故障诊断仿真研究[J]. 计算机集成制造系统, 2006, 12(4):520-524. HAN G C, SUN S D, SI S B, et al. Research on fault diagnosis based on fuzzy probability Petri net system[J]. Computer Integrated Manufacturing System, 2006, 12(4):520-524.
|
[17] |
卓宏明, 李献丽. 基于模糊Petri网的船用齿轮箱可靠性分析系统[J]. 机械研究与应用, 2014, 29(4):204-208. ZHUO H M, LI X L. Reliability analysis system of marine gearbox based on fuzzy Petri net[J]. Mechanical Research and Application, 2014, 29(4):204-208.
|
[18] |
LI X Z, ZHAO P, LIU Y, et al. The study of improved fault Petri nets diagnosis and its application[C]//2nd Workshop on Advanced Research and Technology in Industry Applications. 2016:1920-1925.
|
[19] |
MENG F X, LEI Y J, ZHANG B, et al. Intuitionistic fuzzy Petri nets for knowledge representation and reasoning[J]. Journal of Digital Information Management, 2016, 14(2):104-112.
|
[20] |
王南兰. 基于数据挖掘的柴油机磨损故障诊断Petri网模型[J]. 机械与电子, 2008, (1):34-37. WANG N L. Petri net model for diesel engine wear fault diagnosis based on data mining[J]. Machinery and Electronics, 2008, (1):34-37.
|
[21] |
LIANG Y H, YUAN B C. Method for generating fuzzy petri nets fault diagnosis model based on rough set theory[C]//20102nd International Conference on Future Computer and Communication. 2010:411-414.
|
[22] |
YANG B, LI H. A novel dynamic timed fuzzy Petri nets modeling method with applications to industrial processes[J]. Expert Systems with Applications, 2018, 97(1):276-289.
|
[23] |
YANG B, LI H. A similarity elastic window based approach to process dynamic time delay analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 170:13-24.
|
[24] |
YANG B, LI H, WEN B. A dynamic time delay analysis approach for correlated process variables[J]. Chemical Engineering Research & Design, 2017, 122:141-150.
|
[25] |
LIU H C, YOU J X, TIAN G D. Determining truth degrees of input places in fuzzy Petri net[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(12):3425-3431.
|
[26] |
SHAH A. Association rule mining with modified APRIORI algorithm using top down approach[C]//2nd International Conference on Applied and Theoretical Computing and Communication Technology. 2016:748-752.
|
[27] |
DU P, GAO Y P. A new improvement of APRIORI algorithm for mining association rules[C]//International Conference on Computer Application and System Modeling. 2010:529-532
|
[28] |
LEE Y C, HONG T P, WANG T C. Multi-level fuzzy mining with multiple minimum supports[J]. Expert Systems with Applications, 2008, 34(1):459-468.
|
[29] |
HU H S, LI Z W, AI-AHMARI A, et al. Reversed fuzzy Petri nets and their application for fault diagnosis[J]. Computers & Industrial Engineering, 2011, 60(4):505-510
|
[30] |
袁杰, 史海波, 刘昶, 等. 基于模糊统计的故障Petri网Token确定方法[J]. 山东大学学报(理学版), 2008, 43(3):30-33. YUAN J, SHI H B, LIU C, et al. A method for determining the Token of the fault Petri net based on fuzzy statistics[J]. Journal of Shandong University (Natural Science), 2008, 43(3):30-33.
|