[1] |
XING X, WANG X, PAN H, et al. Fe/graphene nanocomposite as a catalyst for the viscosity reduction of heavy crude oil[J]. Petroleum Science & Technology, 2015, 33(20):1742-1748.
|
[2] |
RANA M S, SAMANO V, ANCHEYTA J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86(9):1216-1231.
|
[3] |
CHEW K J. The future of oil:unconventional fossil fuels[J]. Philosophical Transactions, 2013, 372(2006):1-34.
|
[4] |
HART A. A review of technologies for transporting heavy crude oil and bitumen via pipelines[J]. Journal of Petroleum Exploration & Production Technology, 2014, 4(3):327-336.
|
[5] |
URQUHART R D. Heavy oil transportation-present and future[J]. Journal of Canadian Petroleum Technology, 1985, 25(2):68-71.
|
[6] |
XIA T X, GREAVES M. 3-D physical model studies of downhole catalytic upgrading of wolf lake heavy oil using THAI[J]. Journal of Canadian Petroleum Technology, 2001, 41(8):58-64.
|
[7] |
SANIERE A, HENAUT I, ARGILLIER J F. Pipeline transportation of heavy oils, a strategic, economic and technological challenge[J]. Oil & Gas Science & Technology, 2006, 59(5):455-466.
|
[8] |
段林林, 敬加强, 周艳杰, 等. 稠油降黏集输方法综述[J]. 管道技术与设备, 2009, 32(5):15-18. DUAN L L, JING J Q, ZHOU Y J, et al. A review of the method of viscous oil reduction[J]. Pipeline Technique and Equipment, 2009, 32(5):15-18.
|
[9] |
孟科全, 唐晓东, 邹雯炆, 等. 稠油降粘技术研究进展[J]. 天然气与石油, 2009, 27(3):30-34. MENG K Q, TANG X D, ZOU W W, et al. Research progress of heavy oil viscosity reduction technology[J]. Natural Gas and Oil, 2009, 27(3):30-34.
|
[10] |
MCMILLEN J M. Combined thermal and solvent stimulation:US4519454[P]. 1985.
|
[11] |
GATEAU P, HENAUT I, BARRE L, et al. Heavy oil dilution[J]. Oil & Gas Science & Technology, 2004, 59(5):503-509.
|
[12] |
KHALEDI H A, SMITH I E, UNANDER T E, et al. Investigation of two-phase flow pattern, liquid holdup and pressure drop in viscous oil-gas flow[J]. International Journal of Multiphase Flow, 2014, 67(1):37-51.
|
[13] |
MATSUBARA H, NAITO K. Effect of liquid viscosity on flow patterns of gas-liquid two-phase flow in a horizontal pipe[J]. International Journal of Multiphase Flow, 2011, 37(10):1277-1281.
|
[14] |
NADLER M, MEWES D. Effects of the liquid viscosity on the phase distributions in horizontal gas-liquid slug flow[J]. International Journal of Multiphase Flow, 1995, 21(2):253-266.
|
[15] |
Baker O. Simultaneous flow of oil and gas[J]. Oil Gas, 1954, 3(1):185-190.
|
[16] |
MANDHANE J M, GREGORY G A, AZIZ K. A flow pattern map for gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1974, 1(4):537-553.
|
[17] |
WONG T N, YAU Y K. Flow patterns in two-phase air-water flow[J]. International Communications in Heat & Mass Transfer, 1997, 24(1):111-118.
|
[18] |
BARNEA D, SHOHAM O, TAITEL Y, et al. Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory[J]. International Journal of Multiphase Flow, 1980, 6(3):217-225.
|
[19] |
SPEDDING P L, CHEN J J J. A simplified method of determining flow pattern transition of two-phase flow in a horizontal pipe[J]. International Journal of Multiphase Flow, 1981, 7(6):729-731.
|
[20] |
LIN P Y, HANRATTY T J. Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1987, 13(4):549-563.
|
[21] |
CHAWLA J M. Frictional pressure-drop on flow of liquid/gas mixtures in horizontal pipes[J]. Chemie Ingenieur Technik, 1972, 44(1/2):58-63.
|
[22] |
BEGGS D H, BRILL J P. An experimental study of two-phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5):607-617.
|
[23] |
FOLETTI C, FARISE S, GRASSI B, et al. Experimental investigation on two-phase air/high-viscosity-oil flow in a horizontal pipe[J]. Chemical Engineering Science, 2011, 66(23):5968-5975.
|
[24] |
BRITO R, PEREYRA E, SARICA C, et al. A simplified slug flow model for highly viscous oil-gas flow in horizontal pipes[C]//SPE Technical Conference and Exhibition. 2013.
|
[25] |
SINOPEC Shanghai Engineering Company Limited. Chemical Process Design Handbook (Ⅱ)[M]. Beijing:Chemical Industry Press, 2003:73-74.
|
[26] |
张国忠, 张足斌. 管流液体的有效剪切速率[J]. 油气田地面工程, 2000, 19(1):1-3. ZHANG G Z, ZHANG Z B. Effective shear rate of tube flow fluid[J]. Oil-Gas Surface Engineering, 2000, 19(1):1-3.
|
[27] |
兰文杰, 李少伟, 徐建鸿, 等. 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2):476-483. LAN W J, LI S W, XU J H, et al. The flow law of liquid-liquid two phase viscous fluid in a coaxial loop microfluidic device[J]. CIESC Journal, 2013, 64(2):476-483.
|
[28] |
李广军, 郭烈锦, 高晖, 等. 螺旋管内油-水液液两相流流型[J]. 化工学报, 2000, 51(2):239-242. LI G J, GUO L J, GAO H, et al. Spiral tube oil-water liquid two-phase flow pattern[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(2):239-242.
|
[29] |
HANYANG G U, GUO L. Stability of stratified gas-liquid flow in horizontal and near horizontal pipes[J]. Journal of Chinese Chemical Engineering, 2007, 15(5):619-625.
|
[30] |
DUKLER A E. Gas-Liquid Flow in Pipelines:Research Results, American Gas Association[R]. Vol. 1. 1969.
|
[31] |
张洋. 混输管路压降计算方法在工程上的应用[J]. 管道技术与设备, 2011, 11(4):36-37. ZHANG Y. The application of pressure drop calculation method of mixing pipeline in engineering[J]. Pipeline Technique and Equipment, 2011, 11(4):36-37.
|