[1] |
林宗虎, 汪军, 李瑞阳, 等. 强化传热技术[M]. 北京:化学工业出版社, 2007. LIN Z H, WANG J, LI R Y, et al. The Technology of Heat Transfer Augmentation[M]. Beijing:Chemical Industry Press, 2007.
|
[2] |
郭磊. 电子器件散热及冷却的发展现状研究[J]. 低温与超导, 2014, 42(2):62-66. GUO L. Development of heat dissipation in electronics components[J]. Cryogenics and Superconductivity, 2014, 42(2):62-66.
|
[3] |
张东辉, 丁玉鑫, 吴明发, 等. 管内脉动流强化换热研究进展[J]. 节能技术, 2016, 34(3):221-227. ZHANG D H, DING Y X, WU M F, et al. The research progress of heat transfer enhancement of pulsating flow in tube[J]. Energy Conservation Technology, 2016, 34(3):221-227.
|
[4] |
MACKLEY M R, STONESTREET P. Heat transfer and associated energy dissipation for oscillatory flow in baffled tubes[J]. Chemical Engineering Science, 1995, 50(14):2211-2224.
|
[5] |
LEE B S, KANG I S, LIM H C. Chaotic mixing and mass transfer enhancement by pulsatile laminar flow in an axisymmetric wavy channel[J]. International Journal of Heat and Mass Transfer, 1999, 42(14):2571-2581.
|
[6] |
NISHIMURA T, OKA N, YOSHINAKA Y, et al. Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow[J]. International of Heat and Mass Transfer, 2000, 43(13):2365-2374.
|
[7] |
NISHIMURA T, BIAN Y N, KUNITSUGU K. Mass-transfer enhancement in a wavy-walled tube by imposed fluid oscillation[J]. AIChE Journal, 2010, 50(4):762-770.
|
[8] |
JIN D X, LEE Y P, LEE D Y. Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel[J]. International Journal of Heat and Mass Transfer, 2007, 50(15):3062-3071.
|
[9] |
YANG B C, JIN D X. An experimental investigation of heat transfer enhancement by pulsating laminar flow in a triangular grooved channel[J]. Advanced Materials Research, 2012, 516/517:249-252.
|
[10] |
LI Y, JIN D X, JING Y Q, et al. An experiment investigation of heat transfer enhancement by pulsating laminar flow in rectangular grooved channels[J]. Advanced Materials Research, 2013, 732/733:74-77.
|
[11] |
SELIMEFENDIGIL F, OZTOP H F. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall[J]. International Journal of Heat and Mass Transfer, 2017, 110:231-247.
|
[12] |
WANG Y, HE Y L, YANG W W, et al. Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow[J]. International Journal of Heat and Mass Transfer, 2015, 82:51-65.
|
[13] |
俞接成, 李志信. 环形内肋片圆管层流脉冲流流动强化对流换热数值分析[J]. 清华大学学报(自然科学版), 2005, 45(8):1091-1094. YU J C, LI Z X. Numerical analysis of the enhanced convection heat transfer in an annular finned tube with laminar pulsating flow[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(8):1091-1094.
|
[14] |
WANG C, GAO P Z, TAN S C, et al. Theoretical analysis of phase-lag in low frequency laminar pulsating flow[J]. Progress in Nuclear Energy, 2012, 58(1):45-51.
|
[15] |
WANG C, GAO P Z, TAN S C, et al. Experimental study of friction and heat transfer characteristic in narrow rectangular channel[J]. Nuclear Engineering and Design, 2012, 250(3):646-655.
|
[16] |
WANG C, GAO P Z, TAN S C, et al. Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel[J]. Annals of Nuclear Energy, 2012, 46(8):90-96.
|
[17] |
WANG C, GAO P Z, WANG Z W, et al. Experimental study of transition from laminar to turbulent flow in vertical narrow channel[J]. Annals of Nuclear Energy, 2012, 47(47):85-90.
|
[18] |
WANG C, GAO P Z, TAN S C, et al. Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J]. Experimental Thermal and Fluid Science, 2013, 44(1):490-497.
|
[19] |
钟英杰, 王勋廷, 黄其, 等. 基于场协同理论的脉动流传热机理探究[J]. 浙江工业大学学报, 2015, 43(2):180-184. ZHONG Y J, WANG X T, HUANG Q, et al. A study of heat transfer mechanism in a pulsating flow based on field synergy theory[J]. Journal of Zhejiang University of Technology, 2015, 43(2):180-184.
|
[20] |
黄其, 王勋廷, 杨志超, 等. 有序涡旋对三角槽道脉动流传热的影响[J]. 化工学报, 2016, 67(9):3616-3624. HUANG Q, WANG X T, YANG Z C, et al. Influence of vortex on heat transfer enhancement in triangular grooved channel by pulsating flow[J]. CIESC Journal, 2016, 67(9):3616-3624.
|
[21] |
王华金, 谢宛妮, 孙永利, 等. 新型正交波纹板流体力学性能CFD模拟[J]. 化工学报, 2015, 66(12):4743-4750. WANG H J, XIE W N, SUN Y L, et al. CFD simulation of hydrodynamics of orthogonal wave type tray[J]. CIESC Journal, 2015, 66(12):4743-4750.
|
[22] |
王茜, 韩怀志, 李炳熙. 板式换热器波纹通道的流动与传热机理[J]. 化工学报, 2017, 68(S1):71-82. WANG Q, HAN H Z, LI B X. Flow and heat transfer mechanism of corrugated plated heat exchanger[J]. CIESC Journal, 2017, 68(S1):71-82.
|
[23] |
翁建华, 刘腾辉, 崔晓钰. 微槽道及其在电子器件散热中的应用[J]. 新技术新工艺, 2016, (2):52-55. WENG J H, LIU T H, CUI X Y. Microchannel and its application in heat dissipation of electronic devices[J]. New Technology & New Process, 2016, (2):52-55.
|
[24] |
HARTRTT J P, KOSTIC M. Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts[J]. Advance in Heat Transfer, 1989, 19(9):247-356.
|
[25] |
OHMI M, IGUCHI M, USUI T. Flow pattern and frictional losses in pulsating pipe flow(5):Wall shear stress and flow pattern in a laminar flow[J]. JSME, 1981, 24(187):75-81.
|
[26] |
刘宇生, 谭思超, 高璞珍, 等. 矩形通道内脉动层流阻力特性实验研究[J]. 原子能科学技术, 2013, 47(2):223-228. LIU Y S, TAN S C, GAO P Z, et al. Experimental study on resistance characteristics of pulsating laminar flow in rectangular channel[J]. Atomic Energy Science and Technology, 2013, 47(2):223-228.
|
[27] |
UCHIDA S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluids in a circular pipe[J]. ZAMP, 1956, 7(5):403-422.
|
[28] |
WOMERSLEY J R. Method for the calculation of flow and viscous drag in arrteries when the pressure gradient is known[J]. J. Physiol., 1955, 127:553-563.
|
[29] |
QI X G, SCOTT D M, WILSON D I. Modelling laminar pulsed flow in rectangular microchannels[J]. Chemical Engineering Science, 2008, 63(10):2682-2689.
|
[30] |
王畅, 高璞珍, 许超, 等. 矩形通道内层流脉动流动相位差分析[J]. 原子能科学技术, 2013, 47(2):218-222. WANG C, GAO P Z, XU C, et al. Analysis of phase lag in pulsating laminar flow of rectangular channels[J]. Atomic Energy Science and Technology, 2013, 47(2):218-222.
|