[1] |
SAJANLAL P R, SREEPRASAD T S, NAIR A S, et al. Wires, plates, flowers, needles, and core-shells:diverse nanostructures of gold using polyaniline templates[J]. Langmuir, 2008, 24:4607-4614.
|
[2] |
王辉. 微纳银粉的可控制备[D]. 武汉:华中科技大学, 2011. WANG H. Controlled synthesis of silver micro/nano-particles[D]. Wuhan:Huazhong University of Science & Technology, 2011.
|
[3] |
WANG L, IMURA M, YAMAUCHI Y. Tailored design of architecturally controlled Pt nanoparticles with huge surface areas toward superior unsupported Pt electrocatalysts[J]. ACS Appl. Mater. Interfaces, 2012, 4:2865-2869.
|
[4] |
茹婷婷, 初学峰, 石莹岩, 等. 钯纳米粒子的形貌可控合成与催化性能[J]. 无机化学学报, 2017, 33(10):1835-1842. RU T T, CHU X F, SHI Y Y, et al. Shape-controlled synthesis of Pd nanocrystals with remarkable enhanced catalytic performance[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(10):1835-1842.
|
[5] |
JIN R C, CAO Y W, MIRKIN C A, et al. Photo induced conversion of silver nanospheres to nanoprisms[J]. Science, 2001, 294:1901-1903.
|
[6] |
JIN R C, CAO Y W, HAO E C, et al. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425:487-490.
|
[7] |
KELL K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B, 2003, 107:668-677.
|
[8] |
NOGUCZ C. Surface plasmons on metal nanoparticles:the influence of shape and physical environment[J]. J. Phys. Chem. C, 2007, 111:3806-3819.
|
[9] |
TANG B, LI J, HOU X, et al. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles[J]. Ind. Eng. Chem. Res., 2013, 52:4556-4563.
|
[10] |
HAJIZADEH S, FARHADI K, FOROUGH M, et al. Silver nanoparticles as a cyanide colorimetric sensor in aqueous media[J]. Anal. Methods, 2011, 3:2599-2603.
|
[11] |
YAN J, HAN X, HE J, et al. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces[J]. ACS Appl. Mater. Interfaces, 2012, 4:2752-2756.
|
[12] |
YUAN G, CHANG X, ZHU G. Electrosynthesis and catalytic properties of silver nano/microparticles with different morphologies[J]. Particuology, 2011, 9:644-649.
|
[13] |
WNAG Y, WAN D, XIE S, et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth[J]. ACS Nano, 2013, 7(5):4586-4594.
|
[14] |
TAO A, SINSERMSUKSAKUL P, YANG P. Polyhedral silver nanocrystals with distinct scattering signatures[J]. Angew. Chem. Int. Ed., 2006, 45:4597-4601.
|
[15] |
CHEN Y, GUAN J G, XIE H Q. An efficient way to prepare silver nanorods in high concentration by polyol method without adding other metal or salt[J]. Materials Chemistry and Physics, 2012, 134:686-694.
|
[16] |
HASSE U, PALM G J, HINRICHS W, et al. The growth of single crystal silver wires at the nitrobenzene|water interface[J]. Phys. Chem. Chem. Phys., 2011, 13:12254-12260.
|
[17] |
俞豪杰, 李晓晓, 王立. 在NiCl2、MnCl2或FeCl3存在下用多元醇法高浓度合成银纳米线[J]. 化工学报, 2013, 64(2):749-755. YU H J, LI X X, WANG L. High AgNO3 concentration synthesis of silver nanowires by polyol method in presence of NiCl2, MnCl2 or FeCl3[J]. CIESC Journal, 2013, 64(2):749-755.
|
[18] |
ZHAO, H, NING Y, ZHAO B, et al. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response[J]. Sci. Rep., 2015, 5:13587.
|
[19] |
LIU B, LUO W, ZHAO X. A facile synthesis of ordered ultralong silver nanobelts[J]. Materials Research Bulletin, 2009, 44:682-687.
|
[20] |
ADIANEZ G L, JOSE V G R, SANTIAGO S C. Silver nanostars with high SERS performance[J]. J. Phys. Chem. C, 2013, 117:7791-7795.
|
[21] |
LIANG H, YANG H, WANG W, et al. High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals[J]. J. Am. Chem. Soc., 2009, 131:6068-6069.
|
[22] |
ZHANG J, LI S, WU J, et al. Plasmon-mediated synthesis of silver triangular bipyramids[J]. Angew. Chem., 2009, 121:7927-7931.
|
[23] |
LIU T, LI D, YANG D, et al. Fabrication of flower-like silver structures through anisotropic growth.[J]. Langmuir, 2011, 27:6211-6217.
|
[24] |
HSIAO W H, CHEN H Y, YANG Y C, et al. Surface-enhanced Raman scattering imaging of a single molecule on urchin-like silver nanowires[J]. ACS Appl. Mater. Interfaces, 2011, 3:3280-3284.
|
[25] |
WU W T, PANG W, XU G, et al. In situ formation of Ag flowerlike and dendritic nanostructures in aqueous solution and hydrolysis of an amphiphilic block copolymer[J]. Nanotechnology, 2005, 16:2048-2051.
|
[26] |
LIANG H, LI Z, WANG W, et al. Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering[J]. Adv. Mater., 2009, 21(45):4614-4618.
|
[27] |
HONG L, LI Q, LIN H, et al. Synthesis of flower-like silver nanoarchitectures at room temperature[J]. Mater. Res. Bull., 2009, 44:1201-1204.
|
[28] |
LEI F, GUO R. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J]. Crystal Growth & Design, 2008, 8(7):2150-2156.
|
[29] |
YANG J, QI L, ZHANG D, et al. Dextran-controlled crystallization of silver microcrystals with novel morphologies[J]. Crystal Growth & Design, 2004, 4(6):1371-1375.
|
[30] |
NIE S, LIU C, ZHANG Z, et al. Nitric acid-mediated shape-controlled synthesis and catalytic activity of silver hierarchical microcrystals[J]. RSC Adv., 2016, 6:21511-21516.
|
[31] |
蔡兰坤, 张东曙, 王桂华, 等. 防止银器文物变色的唑系复合缓蚀剂(Ⅱ):SERS法研究唑系缓蚀剂防银变色的作用机理[J]. 华东理工大学学报(自然科学版), 2002, 28(3):269-273. CAI L K, ZHANG D S, WANG G H, et al. Azoles as composite corrosion inhibitor for anti-tarnishing of silver antiques(Ⅱ):Mechanism of the azoles for anti-tarnishing of silver[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2002, 28(3):269-273.
|