[1] |
CHIANG C, CHANG M, LIU H, et al. Process intensification in the production of photocatalysts for solar hydrogen generation[J]. Industrial & Engineering Chemistry Research, 2012, 51(14):5207-5215.
|
[2] |
DEHKORDI A M, VAFAEIMANESH A. Synthesis of barium sulfate nanoparticles using a spinning disk reactor:effects of supersaturation, disk rotation speed, free ion ratio, and disk diameter[J]. Industrial & Engineering Chemistry Research, 2009, 48:7574-7580.
|
[3] |
MOHAMMADI S, HARVEY A, BOODHOO K V K. Synthesis of TiO2 nanoparticles in a spinning disc reactor[J]. Chemical Engineering Journal, 2014, 258:171-184.
|
[4] |
WANG D X, LING X, PENG H, et al. High-temperature analogy experimental investigation on dry granulating characteristic of rotating disk for waste heat utilization of molten slag[J]. Applied Thermal Engineering, 2017, 125:846-855
|
[5] |
WANG D X, PENG H, LING X. Ligament mode disintegration of liquid film at the rotary disk rim in waste heat recovery process of molten slag[J]. Energy Procedia, 2014, 61:1824-1829
|
[6] |
WANG D X, LING X, PENG H. Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process[J]. Applied Thermal Engineering, 2015, 84:437-447.
|
[7] |
WANG D X, LING X, PENG H, et al. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation[J] Energy, 2013, 50:343-352.
|
[8] |
WANG D X, LING X, PENG H. Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag[J]. Applied Thermal Engineering, 2014, 63(1):387-395.
|
[9] |
PENG H, SHAN X K, LING X, et al. Ligament-type granulation of molten slag in different rotary disk configurations[J]. Applied Thermal Engineering, 2018, 128(1):1565-1578.
|
[10] |
PENG H, SHAN X, KANG J, et al. Influence of rotary disk configurations on droplets characteristics in molten slag granulation for waste heat recovery[J]. Applied Thermal Engineering, 2018, 135:269-279
|
[11] |
王东祥, 凌祥, 彭浩, 等. 转盘表面黏性薄液膜稳态流动特性数值模拟[J]. 化工学报, 2017, 68(6):2321-2327. WANG D X, LING X, PENG H, et al. Numerical simulation of stable flow dynamics of viscous film flow on spinning disk surface[J]. CIESC Journal, 2017, 68(6):2321-2327.
|
[12] |
PENG H, WANG N, WANG D X, et al. Experimental study on critical characteristics of liquid atomization by spinning disk[J]. Industrial & Engineering Chemistry Research, 2016, 55(21):6175-6185.
|
[13] |
PENG H, LING X, WANG D X, et al. Experimental investigation on transition characteristics of different rotary disk configurations[J]. Industrial & Engineering Chemistry Research, 2017, 56(39):11281-11291
|
[14] |
王东祥, 凌祥, 彭浩,等. 转盘边缘黏性薄液膜不同破碎模式临界转变特性[J]. 化工学报, 2017, 68(11):4121-4128. WANG D X, LING X, PENG H, et al. Critical breakup transition characteristics of thin viscose liquid film at spinning disk rim[J]. CIESC Journal, 2017, 68(11):4121-4128.
|
[15] |
WANG D X, LING X, PENG H, et al. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016, 55(34):9267-9275.
|
[16] |
何先琰, 王宏, 朱恂, 等. 铅锡合金熔融颗粒风冷相变换热特性实验研究[J]. 工程热物理学报, 2015, 36(8):1748-1751. HE X Y, WANG H, ZHU X. Experiment study on air-cooled phase change heat transfer characteristics of Sn-Pb alloy droplets[J]. Journal of Engineering Thermophysics, 2015, 36(8):1748-1751.
|
[17] |
AHMED M, YOUSSEF M S. Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics[J]. Chemical Engineering Science, 2014, 107(14):149-157.
|
[18] |
LIU J X, YU Q B, DUAN W J, et al. Experimental investigation on ligament formation for molten slag granulation[J]. Applied Thermal Engineering, 2014, 73(1):888-893.
|
[19] |
EISENKLAM P. On ligament formation from spinning discs and cups[J]. Chemical Engineering Science, 1964, 19(9):693-694.
|
[20] |
KAMIYA T. An analysis of the ligament-type disintegration of thin liquid film at the edge of a rotating disk[J]. Journal of Chemical Engineering of Japan, 1972, 5(4):391-396.
|
[21] |
KITAMURA Y, IWAMOTO T, TAKAHASHI T. Atomization of liquids by rotating disks:drop formation from ligaments[J]. Kagaku Kogaku Ronbun, 1976, 2(5):471-475.
|
[22] |
HINZE J O, MILBORN H. Atomization of liquid by means of a rotating cup[J]. Journal of Applied Mechanics Transactions of ASME, 1950, 17(2):145-153.
|
[23] |
FROST A R. Rotary atomization in the ligament formation mode[J]. Journal of Agricultural Engineering Research, 1981, 26(1):63-78.
|
[24] |
FRASER R, DOMBROWSKI N, ROUTLY J. The filming of liquids by spinning cups[J]. Chemical Engineering Science, 1963, 18(6):323-337.
|
[25] |
LIU J X, YU Q B, GUO Q. Experimental investigation of liquid disintegration by rotary cups[J]. Chemical Engineering Science, 2012, 73(19):44-50.
|
[26] |
JOSEPH D D. Potential flows of viscous and viscoelastic fluids[J]. Journal of Fluid Mechanics, 2006, 265(2):1-23.
|
[27] |
JOSEPH D D, SAUT J C. Short-wave instabilities and Ill-posed initial-value problems[J]. Theoretical & Computational Fluid Dynamics, 1990, 1(4):191-227.
|
[28] |
JOSEPH D D, BELANGER J, BEAVERS G S. Breakup of a liquid drop suddenly exposed to a high-speed gas stream[J]. International Journal of Multiphase Flow, 1999, 25(6/7):1263-1303.
|
[29] |
ALISEDA A, HOPFINGER E J, LASHERAS J C. Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet experiments and droplet size modeling[J]. International Journal of Multiphase Flow, 2008, 34(2):161-175.
|
[30] |
BIZJAN B, ŠIROK B, HO?EVAR M, et al. Ligament-type liquid disintegration by a spinning wheel[J]. Chemical Engineering Science, 2014, 116:172-182.
|
[31] |
KITAMURA Y, SYUJIRO IDE, TAKAHASHI T. Atomization of highly viscous emulsions by a spinning disk[J]. Journal of the Fuel Society of Japan, 1991, 70(11):1052-1059.
|