[1] |
KAR S, CHEN X D, NELSON M I. Direct-contact heat transfer coefficient for condensing vapour bubble in stagnant liquid pool[J]. Chemical Engineering Research and Design, 2007, 85(3):320-328.
|
[2] |
LEMENAND T, DURANDAL C, DELLA V D, et al. Turbulent direct-contact heat transfer between two immiscible fluids[J]. International Journal of Thermal Sciences, 2010, 49(10):1886-1898.
|
[3] |
TASEIDIFAR M, SHAHID M, PASHLEY R M. A study of the bubble column evaporator method for improved thermal desalination[J]. Desalination, 2018, 432:97-103.
|
[4] |
SHEN Q, LIN W, GU A, et al. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Frontiers in Energy, 2012, 6(2):122-128.
|
[5] |
XIE C, ZHANG L, LIU Y, et al. A direct contact type ice generator for seawater freezing desalination using LNG cold energy[J]. Desalination, 2018, 435:293-300.
|
[6] |
BAQIR A S, MAHOOD H B, HAMEED M S, et al. Heat transfer measurement in a three-phase spray column direct contact heat exchanger for utilisation in energy recovery from low-grade sources[J]. Energy Conversion and Management, 2016, 126:342-351.
|
[7] |
MAHOOD H B, CAMPBELL A N, THORPE R B, et al. Heat transfer efficiency and capital cost evaluation of a three-phase direct contact heat exchanger for the utilisation of low-grade energy sources[J]. Energy Conversion and Management, 2015, 106:101-109.
|
[8] |
LY H V, KIM S, WOO H C, et al. Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production[J]. Energy, 2015, 93:1436-1446.
|
[9] |
NOMURA T, TSUBOTA M, OYA T, et al. Heat storage in direct-contact heat exchanger with phase change material[J]. Applied Thermal Engineering, 2013, 50(1):26-34.
|
[10] |
MAHOOD H B. Direct-contact heat transfer of a single volatile liquid drop evaporation in an immiscible liquid[J]. Desalination, 2008, 222(1/2/3):656-665.
|
[11] |
EUN H C, CHO Y Z, PARK H S, et al. Study on a recovery of rare earth oxides from a LiCl-KCl-RECl3 system[J]. Journal of Nuclear Materials, 2011, 408(1):110-115.
|
[12] |
PHONGIKAROON S, BEZZANT R W, SIMPSON M F. Measurements and analysis of oxygen bubble distributions in LiCl-KCl molten salt[J]. Chemical Engineering Research and Design, 2013, 91(3):418-425.
|
[13] |
CHEN P C, YANG M W, WEI C H, et al. Selection of blended amine for CO2 capture in a packed bed scrubber using the Taguchi method[J]. International Journal of Greenhouse Gas Control, 2016, 45:245-252.
|
[14] |
HYUN Y J, HYUN J H, CHUN W G, et al. An experimental investigation into the operation of a direct contact heat exchanger for solar exploitation[J]. International Communications in Heat and Mass Transfer, 2005, 32(3):425-434.
|
[15] |
BOHN M S. Air/molten salt direct-contact heat-transfer experiment and economic analysis[R]. Solar Energy Research Inst., Golden, CO (USA), 1983.
|
[16] |
BOHN M S. Air molten salt direct-contact heat exchange[J]. Journal of Solar Energy Engineering, 1985, 107(3):208-214.
|
[17] |
GHAZI H S. Direct-contact heat transfer for air bubbling through water[J]. Journal of Energy Resources Technology, 1991, 113(2):71-74.
|
[18] |
MAHOOD H B, CAMPBELL A N, THORPE R B, et al. Experimental measurements and theoretical prediction for the volumetric heat transfer coefficient of a three-phase direct contact condenser[J]. International Communications in Heat and Mass Transfer, 2015, 66:180-188.
|
[19] |
付海玲. 戊烷-水直接接触相变换热的实验研究与理论分析[D]. 天津:天津大学, 2015. FU H L. The experimental study and theory analysis of n-pentane-water direct contact heat transfer with phase change[D]. Tianjin:Tianjin University, 2015.
|
[20] |
刘军云. 直接接触式换热的实验研究[D]. 昆明:昆明理工大学, 2012. LIU J Y. Experimental study on direct contact heat exchange[D]. Kunming:Kunming University of Science and Technology, 2012.
|
[21] |
ABDULRAHMAN M W. Experimental studies of direct contact heat transfer in a slurry bubble column at high gas temperature of a helium-water-alumina system[J]. Applied Thermal Engineering, 2015, 91:515-524.
|
[22] |
ABDULRAHMAN M W. Experimental studies of the transition velocity in a slurry bubble column at high gas temperature of a helium-water-alumina system[J]. Experimental Thermal and Fluid Science, 2016, 74:404-410.
|
[23] |
THIRUGNANAM C, MARIMUTHU P. Experimental analysis of latent heat thermal energy storage using paraffin wax as phase change material[J]. International Journal of Engineering and Innovative Technology, 2013, 3(2):372-376.
|
[24] |
蒋丽红. θ环填料对直接接触式蒸发换热性能影响的研究[D]. 天津:天津大学, 2015. JIANG L H. The effect of θ rings on direct contact evaporative heat transfer performance[D]. Tianjin:Tianjin University, 2015.
|
[25] |
KIATSIRIROAT T, VITHAYASAI S, VORAYOS N, et al. Heat transfer prediction for a direct contact ice thermal energy storage[J]. Energy Conversion and Management, 2003, 44(4):497-508.
|
[26] |
BAQIR A S, MAHOOD H B, CAMPBELL A N, et al. Measuring the average volumetric heat transfer coefficient of a liquid-liquid-vapour direct contact heat exchanger[J]. Applied Thermal Engineering, 2016, 103:47-55.
|
[27] |
KRISHNA R, WILKINSON P M, VAN D L. A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions[J]. Chemical Engineering Science, 1991, 46(10):2491-2496.
|
[28] |
REILLY I G, SCOTT D S, DEBRUIJN T J W, et al. The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations[J]. The Canadian Journal of Chemical Engineering, 1994, 72(1):3-12.
|
[29] |
ABDULRAHMAN M W. Experimental studies of gas holdup in a slurry bubble column at high gas temperature of a helium-water-alumina system[J]. Chemical Engineering Research and Design, 2016, 109:486-494.
|
[30] |
JORDAN U, SCHUMPE A. The gas density effect on mass transfer in bubble columns with organic liquids[J]. Chemical Engineering Science, 2001, 56(21/22):6267-6272.
|
[31] |
ABDULRAHMAN M W. CFD simulations of direct contact volumetric heat transfer coefficient in a slurry bubble column at a high gas temperature of a helium-water-alumina system[J]. Applied Thermal Engineering, 2016, 99:224-234.
|
[32] |
于海靖. 气泡形成与运动过程的数值仿真研究[D]. 天津:天津大学, 2010. YU H J. Numerical simulation of bubble formation and movement[D]. Tianjin:Tianjin University, 2010.
|
[33] |
MCKINLEY G H, RENARDY M. Wolfgang von Ohnesorge[J]. Physics of Fluids, 2011, 23(12):127101.
|