[1] |
SCHMIDT G, ARCHER D. Climate change:too much of a bad thing[J]. Nature, 2009, 458(7242):1117-1118.
|
[2] |
POWELL C E, QIAO G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. J. Membr. Sci., 2006, 279(1/2):1-49.
|
[3] |
BASU S, KHAN A L, CANO-ODENA A, et al. Membrane-based technologies for biogas separations[J]. Chem. Soc. Rev., 2010, 39(2):750-768.
|
[4] |
D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture:prospects for new materials[J]. Angew. Chem. Int. Ed., 2010, 49(35):6058-6082.
|
[5] |
GIN D L, NOBLE R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030):674-676.
|
[6] |
KOROS W J, ZHANG C. Materials for next-generation molecularly selective synthetic membranes[J]. Nat. Mater., 2017, 16(3):289-297.
|
[7] |
MERKEL T C, LIN H Q, WEI X T, et al. Power plant post-combustion carbon dioxide capture:an opportunity for membranes[J]. J. Membr. Sci., 2010, 359(1/2):126-139.
|
[8] |
ROBESON L M. The upper bound revisited[J]. J. Membr. Sci., 2008, 320(1/2):390-400.
|
[9] |
SANDERS D F, SMITH Z P, GUO R L, et al. Energy-efficient polymeric gas separation membranes for a sustainable future:a review[J]. Polymer, 2013, 54(18):4729-4761.
|
[10] |
ROBESON L M, SMITH Z P, FREEMAN B D, et al. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes[J]. J. Membr. Sci., 2014, 453:71-83.
|
[11] |
DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angew. Chem. Int. Ed., 2017, 56(32):9292-9310.
|
[12] |
KIM S, CHEN L, JOHNSON J K, et al. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation:theory and experiment[J]. J. Membr. Sci., 2007, 294(1/2):147-158.
|
[13] |
SHEN J, LIU G, HUANG K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angew. Chem. Int. Ed., 2015, 54(2):578-582.
|
[14] |
何玉鹏, 王志, 乔志华, 等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报, 2015, 66(10):3979-3990. HE Y P, WANG Z, QIAO Z H, et al. Novel mixed matrix composite membranes containing MCM-41 for CO2 separation[J]. CIESC Journal, 2015, 66(10):3979-3990.
|
[15] |
SABETGHADAM A, SEOANE B, KESKIN D, et al. Metal organic framework crystals in mixed-matrix membranes:impact of the filler morphology on the gas separation performance[J]. Adv. Funct. Mater., 2016, 26(18):3154-3163.
|
[16] |
YUAN P, TAN D, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes:recent research advances and future prospects[J]. Appl. Clay Sci., 2015, 112/113:75-93.
|
[17] |
LIU M X, GUO B C, ZOU Q L, et al. Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites[J]. Nanotechnology, 2008, 19(20):205709.
|
[18] |
LIU M X, GUO B C, DU M L, et al. The role of interactions between halloysite nanotubes and 2,2'-(1,2-ethenediyldi-4,1-phenylene) bisbenzoxazole in halloysite reinforced polypropylene composites[J]. Polym. J., 2008, 40(11):1087-1093.
|
[19] |
HASHEMIFARD S A, ISMAIL A F, MATSUURA T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation:experimental[J]. J. Colloid Interface Sci., 2011, 359(2):359-370.
|
[20] |
HASHEMIFARD S A, ISMAIL A F, MATSUURA T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNTs) as filler for gas separation:morphological diagram[J]. Chem. Eng. J., 2011, 172(1):581-590.
|
[21] |
ISMAIL A F, HASHEMIFARD S A, MATSUURA T. Facilitated transport effect of Ag+ ion exchanged halloysite nanotubes on the performance of polyetherimide mixed matrix membrane for gas separation[J]. J. Membr. Sci., 2011, 379(1/2):378-385.
|
[22] |
MURALI R S, PADAKI M, MATSUURA T, et al. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation[J]. Sep. Purif. Technol., 2014, 132:187-194.
|
[23] |
LIAO J Y, WANG Z, GAO C Y, et al. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation[J]. J. Mater. Chem. A, 2015, 3(32):16746-16761.
|
[24] |
LI Y F, WANG S F, HE G W, et al. Facilitated transport of small molecules and ions for energy-efficient membranes[J]. Chem. Soc. Rev., 2015, 44(1):103-118.
|
[25] |
李雪琴. CO2分离膜的传递通道构建及传递过程强化[D]. 天津:天津大学, 2015. LI X Q. Constructing transport passageways and intensifying transport process of CO2 in membranes[D]. Tianjin:Tianjin University, 2015.
|
[26] |
李奕帆. 聚氧乙烯基CO2分离膜的可控制备与传递机制强化[D]. 天津:天津大学, 2014. LI Y F. PEO-based CO2 separation membranes:controlled preparation and intensification of gas transport mechanisms[D]. Tianjin:Tianjin University, 2014.
|
[27] |
廖家友. 分离CO2固定载体膜中高效微环境设计研究[D]. 天津:天津大学, 2015. LIAO J Y. Design and research of high efficiency microenvironment in fixed carrier membrane for CO2 separation[D]. Tianjin:Tianjin University, 2015.
|
[28] |
XIN Q P, OUYANG J Y, LIU T Y, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks[J]. ACS Appl. Mat. Interfaces, 2015, 7(2):1065-1077.
|
[29] |
ZHANG C, WANG Z, CAI Y, et al. Investigation of gas permeation behavior in facilitated transport membranes:relationship between gas permeance and partial pressure[J]. Chem. Eng. J., 2013, 225:744-751.
|
[30] |
张颖, 王志, 王世昌. CO2固定载体膜过程中物质间相互作用及其影响[J]. 化工学报, 2003, 54(8):1122-1127. ZHANG Y, WANG Z, WANG S C. Substance interactions and their influences in fixed carrier membrane process for CO2 separation[J]. CIESC Journal, 2003, 54(8):1122-1127.
|
[31] |
王倩. 层间距可控的氧化石墨烯/聚乙烯胺膜的制备及CO2分离性能研究[D]. 太原:太原理工大学, 2017. WANG Q. Preparation of modified GO/PVAm membrane by adjusting go interlayer spacing for CO2 separation[D]. Taiyuan:Taiyuan University of technology, 2017.
|