1 |
Sharma M R N , Dasappa S . Solid oxide fuel cell operating with biomass derived producer gas: status and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 450-463.
|
2 |
Song C S . Fuel processing for low-temperature and high temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77(1/2): 17-49.
|
3 |
Wachsman E D , Lee K T . Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939.
|
4 |
Authayanun S , Pornjarungsak T , Prukpraipadung T , et al . SOFC running on steam reforming of biogas: external and internal reforming[C]//Varbanov P S. Pres2016: 19th International Conference on Process Integration, Modeling and Optimization for Energy Savings and Pollution Reduction. Milano: Aidic Servizi Srl, 2016: 361-366.
|
5 |
Liese E A , Gemmen R S . Performance comparison of internal reforming against external reforming in a solid oxide fuel cell, gas turbine hybrid system[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2005, 127(1): 86-90.
|
6 |
Arpino F , Massarotti N . Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells[J]. Energy, 2009, 34(12): 2033-2041.
|
7 |
Jeon D H . A comprehensive CFD model of anode-supported solid oxide fuel cells[J]. Electrochimica Acta, 2009, 54(10): 2727-2736.
|
8 |
Lee S , Kim H , Yoon K J , et al . The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations[J]. International Journal of Heat and Mass Transfer, 2016, 97: 77-93.
|
9 |
Andersson M , Paradis H , Yuan J , et al . Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation[J]. Electrochimica Acta, 2013, 109: 881-893.
|
10 |
RamirezMinguela J , Mendoza-Miranda J , Rodriguez-Muñoz J , et al . Entropy generation analysis of a SOFC by CFD: influence of electrochemical model and its parameters[J]. Thermal Science, 2017, 22:127.
|
11 |
Iibas M , Kumuk B . Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model[J]. Journal of the Energy Institute, 2018. doi:10.1016/j.joei.2018.03.004.
DOI
|
12 |
Khazaee I , Rava A . Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J]. Energy, 2017, 119:235-244.
|
13 |
Andersson M , Yuan J , Sunden B . SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants[J]. Journal of Power Sources, 2013, 232: 42-54.
|
14 |
Razbani O , Assadi M , Andersson M . Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10068-10080.
|
15 |
于建国, 王玉璋, 翁史烈 . 煤气组分对固体氧化物燃料电池碳沉积的影响[J]. 无机材料学报, 2011, 26(11): 1129-1135.
|
|
Yu J G , Wang Y Z , Weng S L . Effects of syngas components on the carbon formation in planar solid oxide fuel cell [J]. Journal of Inorganic Materials, 2011, 26(11): 1129-1135.
|
16 |
Andreassi L , Toro C , Ubertini S . Modeling carbon monoxide direct oxidation in solid oxide fuel cells[J]. Journal of Fuel Cell Science and Technology, 2009, 6(2): 021307-1-021307-15.
|
17 |
Ong K M , Lee W Y , Hanna J , et al . Isolating the impact of CO concentration in syngas mixtures on SOFC performance via internal reforming and direct oxidation[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9035-9047.
|
18 |
Alzate-Restrepo V , Hill J M . Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds[J]. Journal of Power Sources, 2010, 195(5): 1344-1351.
|
19 |
Janardhanan V M , Deutschmann O . CFD analysis of a solid oxide fuel cell with internal reforming: coupled interactions of transport, heterogeneous catalysis and electrochemical processes[J]. Journal of Power Sources, 2006, 162(2): 1192-1202.
|
20 |
杨超, 杨国刚, 岳丹婷, 等 . IT-SOFC阳极表面催化反应机理与传递过程的数值模拟与分析[J]. 化工学报, 2013, 64(6): 2208-2218.
|
|
Yang C , Yang G G , Yue D T , et al . CFD analysis for catalytic reactions and transport processes in anodes of IT-SOFC[J]. CIESC Journal, 2013, 64(6): 2208-2218.
|
21 |
杨国刚, 吕欣荣, 岳丹婷, 等 . SOFC内部重整反应与电化学反应耦合机理[J]. 化工学报, 2008, 59(4):1008-1015.
|
|
Yang G G , Lü X R , Yue D T , et al . Coupling mechanism of internal reforming and electrochemical reaction in SOFC[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(4):1008-1015.
|
22 |
Nikooyeh K , Jeje A A , Hill J M . 3D modeling of anode-supported planar SOFC with internal reforming of methane[J]. Journal of Power Sources, 2007, 171(2): 601-609.
|
23 |
Aguiar P , Adjiman C S , Brandon N P . Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell(Ⅰ): Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1/2): 120-136.
|
24 |
Nerat M , Đ Juričić . A comprehensive 3-D modeling of a single planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3613-3627.
|
25 |
Hosseini S , Vijay P , Ahmed K , et al . Dynamic tank in series modeling of direct internal reforming SOFC[J]. International Journal of Energy Research, 2017, 41(11): 1563-1578.
|
26 |
Tran D L , Tran Q T , Sakamoto M , et al . Modelling of CH4 multiple-reforming within the Ni-YSZ anode of a solid oxide fuel cell[J]. Journal of Power Sources, 2017, 359:507-519.
|