CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4823-4831.DOI: 10.11949/j.issn.0438-1157.20180701
Previous Articles Next Articles
DONG Xuan, PENG Xiaoyi, LIAO Zuwei, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong
Received:
2018-07-02
Revised:
2018-10-17
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (21822809, 61590925) and the National Science Fund for Distinguished Young Scholars of China(21525627).
董轩, 彭肖祎, 廖祖维, 孙婧元, 蒋斌波, 王靖岱, 阳永荣
通讯作者:
廖祖维
基金资助:
国家自然科学基金项目(21822809,61590925);国家杰出青年科学基金项目(21525627)。
CLC Number:
DONG Xuan, PENG Xiaoyi, LIAO Zuwei, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong. Optimal placement of work and heat utilities in chemical plants via energy level grand composite curve[J]. CIESC Journal, 2018, 69(11): 4823-4831.
董轩, 彭肖祎, 廖祖维, 孙婧元, 蒋斌波, 王靖岱, 阳永荣. 基于能级总组合曲线的化工过程功-热公用工程设置[J]. 化工学报, 2018, 69(11): 4823-4831.
[1] | SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished[J]. Energy Policy, 2009, 37(1):181-189. |
[2] | VARBANOV P S, KLEMES J J, WANG X. Methods optimization, process integration and modelling for energy saving and pollution reduction[J]. Energy, 2018, 146:1-3. |
[3] | VITTORINI D, CIPOLLONE R. Energy saving potential in existing industrial compressors[J]. Energy, 2016, 102:502-515. |
[4] | REN Y, LIAO Z W, SUN J Y, et al. Molecular reconstruction:recent progress toward composition modeling of petroleum fractions[J]. Chemical Engineering Journal, 2019, 357:761-775. |
[5] | YANG Y, GE S Y, ZHOU Y F, et al. Effects of DC electric fields on meso-scale structures in electrostatic gas-solid fluidized beds[J]. Chemical Engineering Journal, 2018, 332:293-302. |
[6] | YANG Y, ZI C, HUANG Z L, et al. CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds[J]. Powder Technology, 2017, 308:422-433. |
[7] | HONG X D, LIAO Z W, SUN J Y, et al. Heat transfer blocks diagram:a novel tool for targeting and design of heat exchanger networks inside heat integrated water allocation networks[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2):2704-2715. |
[8] | HONG X D, LIAO Z W, SUN J Y, et al. Energy and water management for industrial large-scale water networks:a systematic simultaneous optimization approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2):2269-2282. |
[9] | ONG B H Y, WALMSLEY T G, ATKINS M J, et al. Total site mass, heat and power integration using process integration and process graph[J]. Journal of Cleaner Production, 2017, 167:32-43. |
[10] | BALDEA M. From process integration to process intensification[J]. Computers & Chemical Engineering, 2015, 81:104-114. |
[11] | LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks (Ⅰ):Systematic generation of energy optimal networks[J]. AIChE Journal, 1978, 24(4):633-642. |
[12] | LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks(Ⅱ):Evolutionary generation of networks with various criteria of optimality[J]. AIChE Journal, 1978, 24(4):642-654. |
[13] | LINNHOFF B, TOWNSEND D W, BOLLAND D, et al. A User Guide on Process Integration for the Efficient Use of Energy[M]. IChemE UK, 1982. |
[14] | LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5):745-763. |
[15] | UMEDA T, ITOH J, SHIROKO K. Heat exchange system synthesis[J]. Chemical Engineering Progress, 1978, 74(7):70-76. |
[16] | LINNHOFF B, DHOLE V R. Shaft work targeting for low temperature process design[J]. Chemical Engineering Science, 1992, 47(8):2081-2091. |
[17] | PAPOULIAS S A, GROSSMANN I E. A structural optimization approach in process synthesis(Ⅱ):Heat recovery networks[J]. Computers and Chemical Engineering, 1983, 7(6):707-721. |
[18] | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration(Ⅰ):Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10):1151-1164. |
[19] | YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration(Ⅱ):Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10):1165-1184. |
[20] | KIM S Y, BAGAJEWICZ M. Global optimization of heat exchanger networks using a new generalized superstructure[J]. Chemical Engineering Science, 2016, 147:30-46. |
[21] | PAVÃO L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization[J]. Chemical Engineering Science, 2017, 158:96-107. |
[22] | LIU F, MA J, FENG X, et al. Simultaneous integrated design for heat exchanger network and cooling water system[J]. Applied Thermal Engineering, 2018, 128:1510-1519. |
[23] | HONG X, LIAO Z, JIANG B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173:537-559. |
[24] | LIU G, ZHOU H, SHEN R, et al. A graphical method for integrating work exchange network[J]. Applied Energy, 2014, 114(2):588-599. |
[25] | ZHUANG Y, LIU L, ZHANG L, et al. An upgraded graphical method for the synthesis of direct work exchanger networks[J]. Industrial & Engineering Chemistry Research, 2017, 56:14304-14315. |
[26] | ZHUANG Y, LIU L, ZHANG L, et al. Direct work exchanger network synthesis of isothermal process based on improved transshipment model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81:295-304. |
[27] | ZHUANG Y, LIU L L, LIU Q L, et al. Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese J. Chem. Eng., 2017, 25(8):1052-1060. |
[28] | 周华, 刘桂莲, 冯霄. 考虑效率的功交换网络问题表格法[J]. 化工学报, 2011, 62(6):1600-1605. ZHOU H, LIU G L, FENG X. Problem table method for work exchange network with efficiency considered[J]. CIESC Journal, 2011, 62(6):1600-1605. |
[29] | RAZIB M S, HASAN M M F, KARIMI I A. Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37(1):262-277. |
[30] | WECHSUNG A, ASPELUND A, GUNDERSEN T, et al. Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8):2090-2108. |
[31] | ONISHI V C, RAVAGNANI M A S S, CABALLERO J A. Simultaneous synthesis of heat exchanger networks with pressure recovery:optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3):893-908. |
[32] | ISHIDA M, KAWAMURA K. Energy and exergy analysis of a chemical process system with distributed parameters based on the enthalpy-direction factor diagram[J]. Industrial & Engineering Chemistry Process Design & Development, 1982, 21(4):690-695. |
[33] | FENG X, ZHU X X. Combining pinch and exergy analysis for process modifications[J]. Applied Thermal Engineering, 1997, 17 (3):249-261. |
[34] | ANANTHARAMAN R, ABBAS O S, GUNDERSEN T. Energy level composite curves-a new graphical methodology for the integration of energy intensive processes[J]. Applied Thermal Engineering, 2006, 26(13):1378-1384. |
[35] | MARMOLEJO-CORREA D, GUNDERSEN T. A new graphical representation of exergy applied to low temperature process design[J]. Computer Aided Chemical Engineering, 2013, 52(22):7145-7156. |
[36] | JIANG X Z, WANG X, FENG L, et al. Adapted computational method of energy level and energy quality evolution for combined cooling, heating and power systems with energy storage units[J]. Energy, 2017, 120:209-216. |
[37] | WANG Z, HAN W, ZHANG N, et al. Exergy cost allocation method based on energy level (ECAEL) for a CCHP system[J]. Energy, 2017, 134:240-247. |
[38] | RANT Z. The influence of preheated air on the combustion irreversibilities[J]. (in German). Brennstoff-Wa?rme-Kraft, 1961, 13 (11):496-500. |
[39] | ISHIDA M, CHUANG C C. New approach to thermodynamics[J]. Energy Conversion & Management, 1997, 38(15/16/17):1543-1555. |
[40] | ISHIDA M, KAWAAMURA K. Energy and exergy analysis of a chemical process system with distributed parameters based on the enthalpy-direction factor diagram[J]. Industrial & Engineering Chemistry Process Design & Development, 1982, 21(4):690-695. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 375
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||